Search Results

Now showing 1 - 4 of 4
  • Item
    Broadening of mode-locking pulses in quantum-dot semiconductor lasers : simulation, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Bimberg, Dieter
    We consider a mode-locked quantum-dot edge-emitting semiconductor laser consisting of a reverse biased saturable absorber and a forward biased amplifying section. To describe the dynamics of this laser we use the traveling wave model taking into account carrier exchange processes between a reservoir and the quantum dots. A comprehensive parameter study is presented and an analysis of mode-locking pulse broadening with an increase of injection current is performed. The results of our theoretical analysis are supported by experimental data demonstrating a strong pulse asymmetry in a monolithic two section quantum dot mode-locked laser
  • Item
    Hybrid mode-locking in edge-emitting semiconductor lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Arkhipov, Rostislav; Pimenov, Alexander; Radziunas, Mindaugas; Vladimirov, Andrei G.; Arsenjevi´c, Dejan; Rachinskii, Dmitrii; Schmeckebier, Holger; Bimberg, Dieter
    Hybrid mode-locking in a two section edge-emitting semiconductor laser is studied numerically and analytically using a set of three delay differential equations. In this set the external RF signal applied to the saturable absorber section is modeled by modulation of the carrier relaxation rate in this section. Estimation of the locking range where the pulse repetition frequency is synchronized with the frequency of the external modulation is performed numerically and the effect of the modulation shape and amplitude on this range is investigated. Asymptotic analysis of the dependence of the locking range width on the laser parameters is carried out in the limit of small signal modulation. Our numerical simulations indicate that hybrid mode-locking can be also achieved in the cases when the frequency of the external modulation is approximately twice larger and twice smaller than the pulse repetition frequency of the free running passively mode-locked laser fP . Finally, we provide an experimental demonstration of hybrid mode-locking in a 20 GHz quantum-dot laser with the modulation frequency of the reverse bias applied to the absorber section close to fP / 2.
  • Item
    Strong asymmetry of mode-locking pulses in quantum-dot semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Birnmberg, Dieter
    We describe the formation of a strong pulse asymmetry in mode-locked quantum-dot edge-emitting two-section semiconductor lasers. A mode decomposition technique reveals the role of the superposition of different modal groups. The results of theoretical analysis are supported by experimental data.
  • Item
    Delayed feedback control of self-mobile cavity solitons in a wide-aperture laser with a saturable absorber
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Schemmelmann, Tobias; Tabbert, Felix; Pimenov, Alexander; Vladimirov, Andrei G.; Gurevich, Svetlana V.
    We investigate the spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity surface-emitting laser with saturable absorption subjected to time-delayed optical feedback. Using a combination of analytical, numerical and path continuation methods we analyze the bifurcation structure of stationary and moving cavity solitons and identify two different types of traveling localized solutions, corresponding to slow and fast motion. We show that the delay impacts both stationary and moving solutions either causing drifting and wiggling dynamics of initially stationary cavity solitons or leading to stabilization of intrinsically moving solutions. Finally, we demonstrate that the fast cavity solitons can be associated with a lateral mode-locking regime in a broad-area laser with a single longitudinal mode.