Search Results

Now showing 1 - 6 of 6
  • Item
    Temporal dissipative solitons in a delayed model of a ring semiconductor laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Pimenov, Alexander; Amiranashvili, Shalva; Vladimirov, Andrei G.
    Temporal cavity solitons are short pulses observed in periodic time traces of the electric field envelope in active and passive optical cavities. They sit on a stable background so that their trajectory comes close to a stable CW solution between the pulses. A common approach to predict and study these solitons theoretically is based on the use of Ginzburg-Landau-type partial differential equations, which, however, cannot adequately describe the dynamics of many realistic laser systems. Here for the first time we demonstrate formation of temporal cavity soliton solutions in a time-delay model of a ring semiconductor cavity with coherent optical injection, operating in anomalous dispersion regime, and perform bifurcation analysis of these solutions.
  • Item
    Strong asymmetry of mode-locking pulses in quantum-dot semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Birnmberg, Dieter
    We describe the formation of a strong pulse asymmetry in mode-locked quantum-dot edge-emitting two-section semiconductor lasers. A mode decomposition technique reveals the role of the superposition of different modal groups. The results of theoretical analysis are supported by experimental data.
  • Item
    Broadening of mode-locking pulses in quantum-dot semiconductor lasers : simulation, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Bimberg, Dieter
    We consider a mode-locked quantum-dot edge-emitting semiconductor laser consisting of a reverse biased saturable absorber and a forward biased amplifying section. To describe the dynamics of this laser we use the traveling wave model taking into account carrier exchange processes between a reservoir and the quantum dots. A comprehensive parameter study is presented and an analysis of mode-locking pulse broadening with an increase of injection current is performed. The results of our theoretical analysis are supported by experimental data demonstrating a strong pulse asymmetry in a monolithic two section quantum dot mode-locked laser
  • Item
    An optically injected mode locked laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Rebrova, Natalia; Huyet, Guillaume; Rachinskii, Dmitrii; Vladimirov, Andrei G.
    We study analytically and numerically a delay differential model of a passively mode-locked semiconductor laser subjected to a single frequency coherent injection. The width of the locking cone is calculated asymptotically in the limit of small injection and compared to that obtained by direct numerical integration of the model equations. The dependence of the locking cone on the laser parameters is discussed
  • Item
    Hybrid mode-locking in edge-emitting semiconductor lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Arkhipov, Rostislav; Pimenov, Alexander; Radziunas, Mindaugas; Vladimirov, Andrei G.; Arsenjevi´c, Dejan; Rachinskii, Dmitrii; Schmeckebier, Holger; Bimberg, Dieter
    Hybrid mode-locking in a two section edge-emitting semiconductor laser is studied numerically and analytically using a set of three delay differential equations. In this set the external RF signal applied to the saturable absorber section is modeled by modulation of the carrier relaxation rate in this section. Estimation of the locking range where the pulse repetition frequency is synchronized with the frequency of the external modulation is performed numerically and the effect of the modulation shape and amplitude on this range is investigated. Asymptotic analysis of the dependence of the locking range width on the laser parameters is carried out in the limit of small signal modulation. Our numerical simulations indicate that hybrid mode-locking can be also achieved in the cases when the frequency of the external modulation is approximately twice larger and twice smaller than the pulse repetition frequency of the free running passively mode-locked laser fP . Finally, we provide an experimental demonstration of hybrid mode-locking in a 20 GHz quantum-dot laser with the modulation frequency of the reverse bias applied to the absorber section close to fP / 2.
  • Item
    Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Pimenov, Alexander; Amiranashvili, Shalva; Vladimirov, Andrei G.
    Nonlinear localised structures appear as solitary states in systems with multistability and hysteresis. In particular, localised structures of light known as temporal cavity solitons were observed recently experimentally in driven Kerr-cavities operating in the anomalous dispersion regime when one of the two bistable spatially homogeneous steady states exhibits a modulational instability. We use a distributed delay system to study theoretically the formation of temporal cavity solitons in an optically injected ring semiconductor-based fiber laser, and propose an approach to derive reduced delay-differential equation models taking into account the dispersion of the intracavity fiber delay line. Using these equations we perform the stability and bifurcation analysis of injection-locked CW states and temporal cavity solitons.