Search Results

Now showing 1 - 7 of 7
  • Item
    Interferometric imaging of the type IIIb and U radio bursts observed with LOFAR on 22 August 2017
    (Les Ulis : EDP Sciences, 2023) Dabrowski, Bartosz; Mikuła, Katarzyna; Flisek, Paweł; Vocks, Christian; Zhang, PeiJin; Magdalenić, Jasmina; Warmuth, Alexander; Morosan, Diana E.; Froń, Adam; Fallows, Richard A.; Bisi, Mario M.; Krankowski, Andrzej; Mann, Gottfried; Błaszkiewicz, Leszek; Carley, Eoin P.; Gallagher, Peter T.; Zucca, Pietro; Rudawy, Paweł; Hajduk, Marcin; Kotulak, Kacper; Sidorowicz, Tomasz
    Context. The Sun is the source of different types of radio bursts that are associated with solar flares, for example. Among the most frequently observed phenomena are type III solar bursts. Their radio images at low frequencies (below 100 MHz) are relatively poorly studied due to the limitations of legacy radio telescopes. Aims. We study the general characteristics of types IIIb and U with stria structure solar radio bursts in the frequency range of 20-80 MHz, in particular the source size and evolution in different altitudes, as well as the velocity and energy of electron beams responsible for their generation. Methods. In this work types IIIb and U with stria structure radio bursts are analyzed using data from the LOFAR telescope including dynamic spectra and imaging observations, as well as data taken in the X-ray range (GOES and RHESSI satellites) and in the extreme ultraviolet (SDO satellite). Results. In this study we determined the source size limited by the actual shape of the contour at particular frequencies of type IIIb and U solar bursts in a relatively wide frequency band from 20 to 80 MHz. Two of the bursts seem to appear at roughly the same place in the studied active region and their source sizes are similar. It is different in the case of another burst, which seems to be related to another part of the magnetic field structure in this active region. The velocities of the electron beams responsible for the generation of the three bursts studied here were also found to be different.
  • Item
    Lensing from small-scale travelling ionospheric disturbances observed using LOFAR
    (Les Ulis : EDP Sciences, 2022) Boyde, Ben; Wood, Alan; Dorrian, Gareth; Fallows, Richard A.; Themens, David; Mielich, Jens; Elvidge, Sean; Mevius, Maaijke; Zucca, Pietro; Dabrowski, Bartosz; Krankowski, Andrzej; Vocks, Christian; Bisi, Mario
    Observations made using the LOw-Frequency ARray (LOFAR) between 10:15 and 11:48 UT on the 15th of September 2018 over a bandwidth of approximately 25-65 MHz contain discrete pseudo-periodic features of ionospheric origin. These features occur within a period of approximately 10 min and collectively last roughly an hour. They are strongly frequency dependent, broadening significantly in time towards the lower frequencies, and show an overlaid pattern of diffraction fringes. By modelling the ionosphere as a thin phase screen containing a wave-like disturbance, we are able to replicate the observations, suggesting that they are associated with small-scale travelling ionospheric disturbances (TIDs). This modelling indicates that the features observed here require a compact radio source at a low elevation and that the TID or TIDs in question have a wavelength <~30 km. Several features suggest the presence of deviations from an idealised sinusoidal wave form. These results demonstrate LOFAR-s capability to identify and characterise small-scale ionospheric structures.
  • Item
    A LOFAR observation of ionospheric scintillation from two simultaneous travelling ionospheric disturbances
    (Les Ulis : EDP Sciences, 2020) Fallows, Richard A.; Forte, Biagio; Astin, Ivan; Allbrook, Tom; Arnold, Alex; Wood, Alan; Dorrian, Gareth; Mevius, Maaijke; Rothkaeh, Hanna; Matyjasiak, Barbara; Krankowski, Andrzej; Anderson, James M.; Asgekar, Ashish; Avruch, I. Max; Bentum, Mark; Bisi, Mario M.; Butcher, Harvey R; Ciardi, Benedetta; Dabrowski, Bartosz; Damstra, Sieds; de Gasperin, Francesco; Duscha, Sven; Eislöffel, Jochen; Franzen, Thomas M.O.; Garrett, Michael A.; Griessmeier, Jean-Matthias; Gunst, Andre W.; Hoeft, Matthias; Horandel, Jorg R.; Iacobelli, Marco; Intema, Huib T.; Koopmans, Leon V.E.; Maat, Peter; Mann, Gottfried; Nelles, Anna; Paas, Harm; Pandey, Vishambhar N.; Reich, Wolfgang; Rowlinson, Antonia; Ruiter, Mark; Schwarz, Dominik J.; Serylak, Maciej; Shulevski, Aleksander; Smirnov, Oleg M.; Soida, Marian; Steinmetz, Matthias; Thoudam, Satyendra; Toribio, M. Carmen; van Ardenne, Arnold; van Bemmel, Ilse M.; van der Wiel, Matthijs H.D.; van Haarlem, Michiel P.; Vermeulen, Rene C.; Vocks, Christian; Wijers, Ralph A.M.J.; Wucknitz, Olaf; Zarka, Philippe; Zucca, Pietro
    This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cassiopeia A, taken overnight on 18–19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10–80 MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR “core” reveals two different velocities in the scintillation pattern: a primary velocity of ~20–40 ms−1 with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of ~110 ms−1 with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller-scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported.
  • Item
    The Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphere
    (London : Institute of Physics Publ., 2022) Jeong, Seong-Yeop; Verscharen, Daniel; Vocks, Christian; Abraham, Joel B.; Owen, Christopher J.; Wicks, Robert T.; Fazakerley, Andrew N.; Stansby, David; Berčič, Laura; Nicolaou, Georgios; Agudelo Rueda, Jeffersson A.; Bakrania, Mayur
    We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank-Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution functions and calculate the kinetic expansion at heliocentric distances from 5 to 20 solar radii. In our kinetic model, the electrons evolve mainly through the combination of ballistic particle streaming, the magnetic mirror force, and the electric field. By applying fits to our numerical results, we quantify the parameters of the electron strahl and the core part of the electron velocity distributions. The strahl fit parameters show that the density of the electron strahl is around 7% of the total electron density at a distance of 20 solar radii, the strahl bulk velocity and strahl temperature parallel to the background magnetic field stay approximately constant beyond a distance of 15 solar radii, and β s (i.e., the ratio of the strahl parallel thermal pressure to the magnetic pressure) is approximately constant with heliocentric distance at a value of about 0.02. We compare our results with data measured by the Parker Solar Probe. Furthermore, we provide theoretical evidence that the electron strahl is not scattered by the oblique fast-magnetosonic/whistler instability in the near-Sun environment.
  • Item
    LOFAR Observations of Substructure Within a Traveling Ionospheric Disturbance at Mid-Latitude
    ([New York] : Wiley, 2023) Dorrian, Gareth; Fallows, Richard; Wood, Alan; Themens, David R.; Boyde, Ben; Krankowski, Andrzej; Bisi, Mario; Dąbrowski, Bartosz; Vocks, Christian
    The large scale morphology and finer sub-structure within a slowly propagating traveling ionospheric disturbance (TID) are studied using wide band trans-ionospheric radio observations with the LOw Frequency ARray (LOFAR; van Haarlem et al., 2013, https://doi.org/10.1051/0004-6361/201220873). The observations were made under geomagnetically quiet conditions, between 0400 and 0800 on 7 January 2019, over the UK. In combination with ionograms and Global Navigation Satellite System Total Electron Content anomaly data we estimate the TID velocity to ∼60 ms−1, in a North-westerly direction. Clearly defined substructures with oscillation periods of ∼300 s were identified within the TID, corresponding to scale sizes of 20 km. At the geometries and observing wavelengths involved, the Fresnel scale is between 3 and 4 km, hence these substructures contribute significant refractive scattering to the received LOFAR signal. The refractive scattering is strongly coherent across the LOFAR bandwidth used here (25–64 MHz). The size of these structures distinguishes them from previously identified ionospheric scintillation with LOFAR in Fallows et al. (2020), https://doi.org/10.1051/swsc/2020010, where the scale sizes of the plasma structure varied from ∼500 m to 5 km.
  • Item
    Interpretation of Radio Wave Scintillation Observed through LOFAR Radio Telescopes
    (London : Institute of Physics Publ., 2022) Forte, Biagio; Fallows, Richard A.; Bisi, Mario M.; Zhang, Jinge; Krankowski, Andrzej; Dabrowski, Bartosz; Rothkaehl, Hanna; Vocks, Christian
    Radio waves propagating through a medium containing irregularities in the spatial distribution of the electron density develop fluctuations in their intensities and phases. In the case of radio waves emitted from astronomical objects, they propagate through electron density irregularities in the interstellar medium, the interplanetary medium, and Earth’s ionosphere. The LOFAR radio telescope, with stations across Europe, can measure intensity across the VHF radio band and thus intensity scintillation on the signals received from compact astronomical objects. Modeling intensity scintillation allows the estimate of various parameters of the propagation medium, for example, its drift velocity and its turbulent power spectrum. However, these estimates are based on the assumptions of ergodicity of the observed intensity fluctuations and, typically, of weak scattering. A case study of single-station LOFAR observations of the strong astronomical source Cassiopeia A in the VHF range is utilized to illustrate deviations from ergodicity, as well as the presence of both weak and strong scattering. Here it is demonstrated how these aspects can lead to misleading estimates of the propagation medium properties, for example, in the solar wind. This analysis provides a method to model errors in these estimates, which can be used in the characterization of both the interplanetary medium and Earth’s ionosphere. Although the discussion is limited to the case of the interplanetary medium and Earth’s ionosphere, its ideas are also applicable to the case of the interstellar medium.
  • Item
    Type III Radio Bursts Observations on 20th August 2017 and 9th September 2017 with LOFAR Bałdy Telescope
    (Basel : MDPI, 2021) Dabrowski, Bartosz; Flisek, Paweł; Mikuła, Katarzyna; Froń, Adam; Vocks, Christian; Magdalenić, Jasmina; Krankowski, Andrzej; Zhang, PeiJin; Zucca, Pietro; Mann, Gottfried
    We present the observations of two type III solar radio events performed with LOFAR (LOw-Frequency ARray) station in Bałdy (PL612), Poland in single mode. The first event occurred on 20th August 2017 and the second one on 9th September 2017. Solar dynamic spectra were recorded in the 10 MHz up to 90 MHz frequency band. Together with the wide frequency bandwidth LOFAR telescope (with single station used) provides also high frequency and high sensitivity observations. Additionally to LOFAR observations, the data recorded by instruments on boards of the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory (SDO) in the UV spectral range complement observations in the radio field. Unfortunately, only the radio event from 9th September 2017 was observed by both satellites. Our study shows that the LOFAR single station observations, in combination with observations at other wavelengths can be very useful for better understanding of the environment in which the type III radio events occur.