Search Results

Now showing 1 - 3 of 3
  • Item
    The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
    (Katlenburg-Lindau : Copernicus, 2020) Meinshausen, Malte; Nicholls, Zebedee R. J.; Lewis, Jared; Gidden, Matthew J.; Vogel, Elisabeth; Freund, Mandy; Beyerle, Urs; Gessner, Claudia; Nauels, Alexander; Bauer, Nico; Canadell, Josep G.; Daniel, John S.; John, Andrew; Krummel, Paul B.; Luderer, Gunnar; Meinshausen, Nicolai; Montzka, Stephen A.; Rayner, Peter J.; Reimann, Stefan; Smith, Steven J.; van den Berg, Marten; Velders, Guus J. M.; Vollmer, Martin K.; Wang, Ray H. J.
    Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a “hockey-stick” upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.
  • Item
    Historical greenhouse gas concentrations for climate modelling (CMIP6)
    (München : European Geopyhsical Union, 2017) Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander; Lorbacher, Katja; Meinshausen, Nicolai; Etheridge, David M.; Fraser, Paul J.; Montzka, Stephen A.; Rayner, Peter J.; Trudinger, Cathy M.; Krummel, Paul B.; Beyerle, Urs; Canadell, Josep G.; Daniel, John S.; Enting, Ian G.; Law, Rachel M. Law; Lunder, Chris R.; O'Doherty, Simon; Prinn, Ron G.; Reimann, Stefan; Rubino, Mauro; Velders, Guus J.M.; Vollmer, Martin K.; Wang, Ray H.J.; Weiss, Ray
    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3ppm, CH4 at 808.2ppb and N2O at 273.0ppb. The data are available at https://esgf-node.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality).
  • Item
    The effects of climate extremes on global agricultural yields
    (Bristol : IOP Publ., 2019) Vogel, Elisabeth; Donat, Markus G.; Alexander, Lisa V.; Meinshausen, Malte; Ray, Deepak K.; Karoly, David; Meinshausen, Nicolai; Frieler, Katja
    Climate extremes, such as droughts or heat waves, can lead to harvest failures and threaten the livelihoods of agricultural producers and the food security of communities worldwide. Improving our understanding of their impacts on crop yields is crucial to enhance the resilience of the global food system. This study analyses, to our knowledge for the first time, the impacts of climate extremes on yield anomalies of maize, soybeans, rice and spring wheat at the global scale using sub-national yield data and applying a machine-learning algorithm. We find that growing season climate factors—including mean climate as well as climate extremes—explain 20%–49% of the variance of yield anomalies (the range describes the differences between crop types), with 18%–43% of the explained variance attributable to climate extremes, depending on crop type. Temperature-related extremes show a stronger association with yield anomalies than precipitation-related factors, while irrigation partly mitigates negative effects of high temperature extremes. We developed a composite indicator to identify hotspot regions that are critical for global production and particularly susceptible to the effects of climate extremes. These regions include North America for maize, spring wheat and soy production, Asia in the case of maize and rice production as well as Europe for spring wheat production. Our study highlights the importance of considering climate extremes for agricultural predictions and adaptation planning and provides an overview of critical regions that are most susceptible to variations in growing season climate and climate extremes.