Search Results

Now showing 1 - 10 of 23
  • Item
    Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites
    (Amsterdam [u.a.] : Elsevier Science, 2020) Li, Yilong; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte
    With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.
  • Item
    AB- Versus AA+BB-Suzuki Polycondensation: A Palladium/Tris(tert-butyl)phosphine Catalyst Can Outperform Conventional Catalysts
    (Weinheim : Wiley-VCH, 2020) Zhang, Kenan; Tkachov, Roman; Ditte, Kristina; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A Pd/Pt-Bu3 catalyst having bulky, electron-rich ligands significantly outperforms conventional “step-growth catalysts” Pd(PPh3)4 and Pd(Po-Tol3)3 in the Suzuki polycondensation of the AB-type arylene-based monomers, such as some of the substituted fluorenes, carbazoles, and phenylenes. In the AA+BB polycondensation, Pd/Pt-Bu3 also performs better under homogeneous reaction conditions, in combination with the organic base Et4NOH. The superior performance of Pd/Pt-Bu3 is discussed in terms of its higher reactivity in the oxidative addition step and inherent advantages of the intramolecular catalyst transfer, which is a key step joining catalytic cycles of the AB-polycondensation. These findings are applied to the synthesis of a carbazole-based copolymer designed for the use as a hole conductor in solution-processed organic light-emitting diodes. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids
    (Bristol : IOP Publ., 2020) Özdemir, Zeynep Güven; Daşdan, Dolunay Şakar; Kavak, Pelin; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte; SüngüMısırlıoğlu, Banu
    In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Hydrogel microvalves as control elements for parallelized enzymatic cascade reactions in microfluidics
    (Basel : MDPI, 2020) Obst, Franziska; Beck, Anthony; Bishayee, Chayan; Mehner, Philipp J.; Richter, Andreas; Voit, Brigitte; Appelhans, Dietmar
    Compartmentalized microfluidic devices with immobilized catalysts are a valuable tool for overcoming the incompatibility challenge in (bio) catalytic cascade reactions and high-throughput screening of multiple reaction parameters. To achieve flow control in microfluidics, stimuli-responsive hydrogel microvalves were previously introduced. However, an application of this valve concept for the control of multistep reactions was not yet shown. To fill this gap, we show the integration of thermoresponsive poly(N-isopropylacrylamide) (PNiPAAm) microvalves (diameter: 500 and 600 µm) into PDMS-on-glass microfluidic devices for the control of parallelized enzyme-catalyzed cascade reactions. As a proof-of-principle, the biocatalysts glucose oxidase (GOx), horseradish peroxidase (HRP) and myoglobin (Myo) were immobilized in photopatterned hydrogel dot arrays (diameter of the dots: 350 µm, amount of enzymes: 0.13-2.3 µg) within three compartments of the device. Switching of the microvalves was achieved within 4 to 6 s and thereby the fluid pathway of the enzyme substrate solution (5 mmol/L) in the device was determined. Consequently, either the enzyme cascade reaction GOx-HRP or GOx-Myo was performed and continuously quantified by ultraviolet-visible (UV-Vis) spectroscopy. The functionality of the microvalves was shown in four hourly switching cycles and visualized by the path-dependent substrate conversion. © 2020 by the authors.
  • Item
    Hydrogel patterns in microfluidic devices by do-it-yourself UV-photolithography suitable for very large-scale integration
    (Basel : MDPI, 2020) Beck, Anthony; Obst, Franziska; Busek, Mathias; Grünzner, Stefan; Mehner, Philipp J.; Paschew, Georgi; Appelhans, Dietmar; Voit, Brigitte; Richter, Andreas
    The interest in large-scale integrated (LSI) microfluidic systems that perform highthroughput biological and chemical laboratory investigations on a single chip is steadily growing. Such highly integrated Labs-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents. One LoC platform technology capable of LSI relies on specific intrinsically active polymers, the so-called stimuli-responsive hydrogels. Analogous to microelectronics, the active components of the chips can be realized by photolithographic micro-patterning of functional layers. The miniaturization potential and the integration degree of the microfluidic circuits depend on the capability of the photolithographic process to pattern hydrogel layers with high resolution, and they typically require expensive cleanroom equipment. Here, we propose, compare, and discuss a cost-efficient do-it-yourself (DIY) photolithographic set-up suitable to micro-pattern hydrogel-layers with a resolution as needed for very large-scale integrated (VLSI) microfluidics. The achievable structure dimensions are in the lower micrometer scale, down to a feature size of 20 µm with aspect ratios of 1:5 and maximum integration densities of 20,000 hydrogel patterns per cm. Furthermore, we demonstrate the effects of miniaturization on the efficiency of a hydrogel-based microreactor system by increasing the surface area to volume (SA:V) ratio of integrated bioactive hydrogels. We then determine and discuss a correlation between ultraviolet (UV) exposure time, cross-linking density of polymers, and the degree of immobilization of bioactive components. © 2020 by the authors.
  • Item
    Influence of Polyvinylpyrrolidone on Thermoelectric Properties of Melt-Mixed Polymer/Carbon Nanotube Composites
    (Basel : MDPI, 2023) Krause, Beate; Imhoff, Sarah; Voit, Brigitte; Pötschke, Petra
    For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to −31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.
  • Item
    Tailor-Made Functional Polymethacrylates with Dual Characteristics of Self-Healing and Shape-Memory Based on Dynamic Covalent Chemistry
    (New York, NY [u.a.] : Wiley InterScience, 2020) Mondal, Prantik; Behera, Prasanta K.; Voit, Brigitte; Böhme, Frank; Singha, Nikhil K.
    New shape memory polymers with self-healing behavior are obtained by thermoreversible Diels–Alder (DA) cross-linking of a furfuryl group-containing star-block copolymer with 1,1'-(methylenedi-4,1-phenylene)bismaleimide. The star-block copolymer consisting of a 3-arm polycaprolactone (PCL) core and a polyfurfuryl methacrylate shell is synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. For this, a 3-arm macro-RAFT agent based on PCL is converted with an appropriate amount of furfuryl methacrylate in the presence of a radical initiator. Films of the DA network are partly insoluble at ambient temperatures. After annealing at 120 °C the films become completely soluble because of the progressing retro-DA reaction. Evaporation of the solvent and subsequent annealing at 60 °C restores the original insoluble state of the material. By means of a scratch test and tensile tests on cut and subsequently mended samples it is shown that the retro-DA reaction facilitates self-healing. Additionally, the films show pronounced shape memory effects with reasonable shape recovery and fixity ratios, which are attributed to the melting and crystallization of the PCL phase. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors
    (Bristol : IOP Publishing, 2021) Binder, Simon; Zschoche, Stefan; Voit, Brigitte; Gerlach, Gerald
    Stimulus-responsive hydrogels are swellable polymers that take up a specific volume depending on a measured variable present in solution. Hydrogel-based chemical sensors make use of this ability by converting the resulting swelling pressure, which depends on the measured variable, into an electrical value. Due to the tedious swelling processes, the measuring method of intramolecular force compensation is used to suppress these swelling processes and, thus, significantly increase the sensor's response time. However, intramolecular force compensation requires a bisensitive hydrogel. In addition to the sensitivity of the measured variable the gel has to provide a second sensitivity for intrinsic compensation of the swelling pressure. At the same time, this hydrogel has to meet further requirements, e.g. high compressive strength. Until now, interpenetrating polymer networks (IPN) have been used for such a force-compensatory effective hydrogel, which are complex to manufacture. In order to significantly simplify the sensor design and production, a simpler synthesis of the bisensitive hydrogel is desirable. This paper presents a new bisensitive hydrogel based on semi-interpenetrating polymer networks. It is based on a copolymer network consisting of N-isopropylacrylamide (NiPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and long PAMPS strands that permeate it. Measurements show, that this hydrogel meets all essential requirements for intramolecular force compensation and is at the same time much easier to synthesize than previously used IPN hydrogels. © 2021 The Author(s).
  • Item
    Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement
    (Weinheim : Wiley-VCH, 2021) Lai, Thu Hang; Keperscha, Bettina; Qiu, Xianping; Voit, Brigitte; Appelhans, Dietmar
    For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host–guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50–100 µg) and/or DDS (100–400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.
  • Item
    Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics
    (Weinheim : Wiley-VCH, 2021) Moreno, Silvia; Boye, Susanne; Ajeilat, Hane George Al; Michen, Susanne; Tietze, Stefanie; Voit, Brigitte; Lederer, Albena; Temme, Achim; Appelhans, Dietmar
    Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.