Search Results

Now showing 1 - 3 of 3
  • Item
    Synthesis and characterization of poly(1,2,3-triazole)s with inherent high sulfur content for optical applications
    (Hoboken, NJ : Wiley, 2023) Mazumder, Kajari; Komber, Hartmut; Bittrich, Eva; Voit, Brigitte; Banerjee, Susanta
    The synthesis of solution-processable sulfur-containing polytriazoles for optoelectronic applications is a relatively less explored domain in polymer research. The synthesis of novel bifunctional (DA) and trifunctional (TA) azido-monomers with inherent high sulfur content and of organo-soluble high refractive index poly(1,2,3-triazole)s using the azido-monomers via Cu(I) assisted click polymerization reactions are reported in this work. The azido-monomers were synthesized by the conversion of previously reported amine-functionalized compounds to azides using azidotrimethylsilane in a polar aprotic solvent. Dialkyne monomers were also synthesized and reacted with the azides to prepare a series of five linear and two hyperbranched poly(1,2,3-triazole)s. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermogravimetric analysis were used to characterize the synthesized polymers. It was also demonstrated that the use of the trifunctional azide in optimized conditions resulted in increased solubility of an otherwise insoluble linear poly(1,2,3-triazole). The optical characterization of the polymers was carried out on thin polymer films with thickness in the nanometer range, which were successfully prepared by spin-coating on silicon wafers. It was found that the increase in the sulfur and aromatic content in the polymer backbone successfully increased the refractive index of the polymers up to 1.743 at 589 nm.
  • Item
    Self-Replication of Deeply Buried Doped Silicon Structures, which Remotely Control the Etching Process: A New Method for Forming a Silicon Pattern from the Bottom Up
    (Weinheim : Wiley-VCH, 2021) Schutzeichel, Christopher; Kiriy, Nataliya; Kiriy, Anton; Voit, Brigitte
    A typical microstructuring process utilizes photolithographic masks to create arbitrary patterns on silicon substrates in a top-down approach. Herein, a new, bottom-up microstructuring method is reported, which enables the patterning of n-doped silicon substrates to be performed without the need for application of etch-masks or stencils during the etching process. Instead, the structuring process developed herein involves a simple alkaline etching performed under illumination and is remotely controlled by the p-doped micro-sized implants, buried beneath a homogeneous n-doped layer at depths of 0.25 to 1 Âµm. The microstructuring is realized because the buried implants act upon illumination as micro-sized photovoltaic cells, which generate a flux of electrons and increase the negative surface charge in areas above the implants. The locally increased surface charge causes a local protection of the native silicon oxide layer from alkaline etching, which ultimately leads to the microstructuring of the substrate. In this way, substrates having at their top a thick layer of homogeneously n-doped silicon can be structured, reducing the need for costly, time-consuming photolithography steps. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells
    (Washington, DC : ACS, 2020) Lundberg, Lundberg; Wei, Qiang; Ge, Ziyi; Voit, Brigitte; Reineke, Sebastian; Edman, Ludvig
    Semiconducting polymers that feature thermally activated delayed fluorescence (TADF) can deliver a much desired combination of high-efficiency and metal-free electroluminescence and cost-efficient solution-based fabrication. A TADF polymer is thus a very good fit for the emitting compound in light-emitting electrochemical cells (LECs) because the commonly employed air-stabile and few-layer LEC architecture is well suited for such solution-based fabrication. Herein we report on the first LEC device based on a TADF polymer as the emitting species, which delivers a luminance of 96 cd m-2 at 4 V and a current efficacy of 1.4 cd A-1 and >600 cd m-2 at 6 V, which is competitive with the performance of multilayer organic light-emitting diodes based on the same TADF polymer. We further utilize the established sensitivity of the emission of the TADF polymer to its environment to draw conclusions on the exciton populations in host-guest and host-free TADF LEC devices. Copyright © 2020 American Chemical Society.