Search Results

Now showing 1 - 2 of 2
  • Item
    Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions
    (Oxford : Elsevier Science, 2014) Staudinger, Ulrike; Krause, Beate; Steinbach, Christine; Pötschke, Petra; Voit, Brigitte
    The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.
  • Item
    Interfacial chemistry using a bifunctional coupling agent for enhanced electrical properties of carbon nanotube based composites
    (Oxford : Elsevier Science, 2013) Socher, Robert; Jakisch, Lothar; Krause, Beate; Oertel, Ulrich; Voit, Brigitte; Pötschke, Petra
    A bifunctional coupling agent (BCA) containing one oxazoline and one benzoxazinone group was applied to promote a reaction between polyamide 12 (PA12) and multiwalled carbon nanotubes (MWCNTs) during melt mixing. With this modification, the MWCNT content needed for the electrical percolation was significantly reduced by more than a factor of three. For amino functionalized MWCNT-PA12 composites adding 1 wt.% BCA electrical percolation was reached at only 0.37 wt.% MWCNTs compared to 1.0 wt.% without BCA. With the help of a model reaction, the covalent attachment of the BCA to the MWCNTs could be shown by thermogravimetric analysis (TGA) and via fluorescence spectroscopy. Model compounds were applied containing either only the oxazoline or the benzoxazinone group to show that the better electrical properties in the PA12-MWCNT composites were a result of a covalent bond between the polymer and the nanotube which only takes place when the BCA was used. In addition, significantly higher electrical conductivity values were obtained by the addition of BCA as well with amino functionalized as with nonmodified commercial MWCNTs. This surprising result was attributed to the significant hydroxy group content on the surface of those commercial MWCNTs. © 2013 Elsevier Ltd. All rights reserved.