Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa

2020, Yao, M., Manna, K., Yang, Q., Fedorov, A., Voroshnin, V., Valentin Schwarze, B., Hornung, J., Chattopadhyay, S., Sun, Z., Guin, S.N., Wosnitza, J., Borrmann, H., Shekhar, C., Kumar, N., Fink, J., Sun, Y., Felser, C.

Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.

Loading...
Thumbnail Image
Item

Turning charge-density waves into Cooper pairs

2020, Chikina, A., Fedorov, A., Bhoi, D., Voroshnin, V., Haubold, E., Kushnirenko, Y., Kim, K.H., Borisenko, S.

The relationship between charge-density waves (CDWs) and superconductivity is a long-standing debate. Often observed as neighbors in phase diagrams, it is still unclear whether they cooperate, compete, or simply coexist. Using angle-resolved photoemission spectroscopy, we demonstrate here that by tuning the energy position of the van Hove singularity in Pd-doped 2H-TaSe2, one is able to suppress CDW and enhance superconductivity by more than an order of magnitude. We argue that it is particular fermiology of the material that is responsible for each phenomenon, thus explaining their persistent proximity as phases.