Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Photoelectron holography in strong optical and dc electric fields

2014, Stodolna, A., Huismans, Y., Rouzée, A., Lépine, F., Vrakking, M.J.J.

The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.

Loading...
Thumbnail Image
Item

Attosecond control of electron-ion recollision in high harmonic generation

2011, Gademann, G., Kelkensberg, F., Siu, W.K., Johnsson, P., Gaarde, M.B., Schafer, K.J., Vrakking, M.J.J.

We show that high harmonic generation driven by an intense nearinfrared (IR) laser can be temporally controlled when an attosecond pulse train (APT) is used to ionize the generation medium, thereby replacing tunnel ionization as the first step in the well-known three-step model. New harmonics are formed when the ionization occurs at a well-defined time within the optical cycle of the IR field. The use of APT-created electron wave packets affords new avenues for the study and application of harmonic generation. In the present experiment, this makes it possible to study harmonic generation at IR intensities where tunnel ionization does not give a measurable signal.

Loading...
Thumbnail Image
Item

Ultrafast relaxation dynamics of highly-excited states in N2 molecules excited by femtosecond XUV pulses

2013, Lucchini, M., Seung, Kim, K., Calegari, F., Kelkensberg, F., Siu, W.K., Sansone, G., Vrakking, M.J.J., Hochlaf, M., Nisoli, M.

We used velocity-map-imaging to measure electronic and nuclear dynamics in N2 molecules excited by a train of attosecond pulses. A time-to-space mapping of autoionization channel is demonstrated. It is found that the autoionization becomes energetically allowed when the two nuclei are still very close (~ 3 Å) and that it can be coherently manipulated by a strong femtosecond infrared pulse.

Loading...
Thumbnail Image
Item

Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance

2013, Kornilov, O., Eckstein, M., Rosenblatt, M., Schulz, C.P., Motomura, K., Rouzée, A., Klei, J., Foucar, L., Siano, M., Lübcke, A., Schapper, F., Johnsson, P., Holland, D.M.P., Schlathölter, T., Marchenko, T., Düsterer, S., Ueda, K., Vrakking, M.J.J., Frasinski, L.J.

Single-shot time-of-flight spectra for Coulomb explosion of N2 and I2 molecules have been recorded at the Free Electron LASer in Hamburg (FLASH) and have been analysed using a partial covariance mapping technique. The partial covariance analysis unravels a detailed picture of all significant Coulomb explosion pathways, extending up to the N 4+-N5+ channel for nitrogen and up to the I 8+-I9+ channel for iodine. The observation of the latter channel is unexpected if only sequential ionization processes from the ground state ions are considered. The maximum kinetic energy release extracted from the covariance maps for each dissociation channel shows that Coulomb explosion of nitrogen molecules proceeds much faster than that of the iodine. The N 2 ionization dynamics is modelled using classical trajectory simulations in good agreement with the outcome of the experiments. The results suggest that covariance mapping of the Coulomb explosion can be used to measure the intensity and pulse duration of free-electron lasers.

Loading...
Thumbnail Image
Item

Attosecond streaking in a nano-plasmonic field

2012, Kelkensberg, F., Koenderink, A.F., Vrakking, M.J.J.

A theoretical study of the application of attosecond streaking spectroscopy to time-resolved studies of the plasmonic fields surrounding isolated, resonantly excited spherical nanoparticles is presented. A classification of the different regimes in attosecond streaking is proposed and identified in our results that are derived from Mie calculations of plasmon fields, coupled to classical electron trajectory simulations. It is shown that in an attosecond streaking experiment, the electrons are almost exclusively sensitive to the component of the field parallel to the direction in which they are detected. This allows one to probe the different components of the field individually by resolving the angle of emission of the electrons. Finally, simulations based on fields calculated by finite-difference time-domain (FDTD) are compared with the results obtained using Mie fields. The two are found to be in good agreement with each other, supporting the notion that FDTD methods can be used to reliably investigate non-spherical structures.

Loading...
Thumbnail Image
Item

Attosecond electron spectroscopy using a novel interferometric pump-probe technique

2010, Mauritsson, J., Remetter, T., Swoboda, M., Klünder, K., L'Huillier, A., Schafer, K.J., Ghafur, O., Kelkensberg, F., Siu, W., Johnsson, P., Vrakking, M.J.J., Znakovskaya, I., Uphues, T., Zherebtsov, S., Kling, M.F., Lépine, F., Benedetti, E., Ferrari, F., Sansone, G., Nisoli, M.

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.

Loading...
Thumbnail Image
Item

Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO 2 nanospheres in intense few-cycle laser fields

2012, Zherebtsov, S., Süßmann, F., Peltz, C., Plenge, J., Betsch, K.J., Znakovskaya, I., Alnaser, A.S., Johnson, N.G., Kübel, M., Horn, A., Mondes, V., Graf, C., Trushin, S.A., Azzeer, A., Vrakking, M.J.J., Paulus, G.G., Krausz, F., Rühl, E., Fennel, T., Kling, M.F.

Waveform-controlled light fields offer the possibility of manipulating ultrafast electronic processes on sub-cycle timescales. The optical lightwave control of the collective electron motion in nanostructured materials is key to the design of electronic devices operating at up to petahertz frequencies. We have studied the directional control of the electron emission from 95 nm diameter SiO 2 nanoparticles in few-cycle laser fields with a well-defined waveform. Projections of the three-dimensional (3D) electron momentum distributions were obtained via single-shot velocity-map imaging (VMI), where phase tagging allowed retrieving the laser waveform for each laser shot. The application of this technique allowed us to efficiently suppress background contributions in the data and to obtain very accurate information on the amplitude and phase of the waveform-dependent electron emission. The experimental data that are obtained for 4 fs pulses centered at 720 nm at different intensities in the range (1-4)×10 13Wcm -2 are compared to quasi-classical mean-field Monte-Carlo simulations. The model calculations identify electron backscattering from the nanoparticle surface in highly dynamical localized fields as the main process responsible for the energetic electron emission from the nanoparticles. The local field sensitivity of the electron emission observed in our studies can serve as a foundation for future research on propagation effects for larger particles and field-induced material changes at higher intensities.

Loading...
Thumbnail Image
Item

Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields

2008, Kling, M.F., Rauschenberger, J., Verhoef, A.J., Hasović, E., Uphues, T., Milošević, D.B., Muller, H.G., Vrakking, M.J.J.

Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.