Search Results

Now showing 1 - 2 of 2
  • Item
    Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate
    (Bristol : IOP Publ., 2020) Witting, T.; Furch, F.; Osolodkov, M.; Schell, F.; Menoni, C.; Schulz, C.P.; Vrakking, M.J.J.
    An attosecond pump-probe beamline with 100 kHz repetition rate for coincidence experiments has been developed. It is based on non-collinear optical parametric chirped pulse ampli-cation and delivers 100 µJ sub-4 fs to an high-harmonic generation source. Details on the generation and characterization of isolated attosecond pulses will be presented. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Attosecond control of electron-ion recollision in high harmonic generation
    (Bristol : IOP, 2011) Gademann, G.; Kelkensberg, F.; Siu, W.K.; Johnsson, P.; Gaarde, M.B.; Schafer, K.J.; Vrakking, M.J.J.
    We show that high harmonic generation driven by an intense nearinfrared (IR) laser can be temporally controlled when an attosecond pulse train (APT) is used to ionize the generation medium, thereby replacing tunnel ionization as the first step in the well-known three-step model. New harmonics are formed when the ionization occurs at a well-defined time within the optical cycle of the IR field. The use of APT-created electron wave packets affords new avenues for the study and application of harmonic generation. In the present experiment, this makes it possible to study harmonic generation at IR intensities where tunnel ionization does not give a measurable signal.