Search Results

Now showing 1 - 3 of 3
  • Item
    Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management
    (Katlenburg-Lindau : Copernicus, 2020) Burek, Peter; Satoh, Yusuke; Kahil, Taher; Tang, Ting; Greve, Peter; Smilovic, Mikhail; Guillaumot, Luca; Zhao, Fang; Wada, Yoshihide
    We develop a new large-scale hydrological and water resources model, the Community Water Model (CWatM), which can simulate hydrology both globally and regionally at different resolutions from 30 arcmin to 30 arcsec at daily time steps. CWatM is open source in the Python programming environment and has a modular structure. It uses global, freely available data in the netCDF4 file format for reading, storage, and production of data in a compact way. CWatM includes general surface and groundwater hydrological processes but also takes into account human activities, such as water use and reservoir regulation, by calculating water demands, water use, and return flows. Reservoirs and lakes are included in the model scheme. CWatM is used in the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which compares global model outputs. The flexible model structure allows for dynamic interaction with hydro-economic and water quality models for the assessment and evaluation of water management options. Furthermore, the novelty of CWatM is its combination of state-of-the-art hydrological modeling, modular programming, an online user manual and automatic source code documentation, global and regional assessments at different spatial resolutions, and a potential community to add to, change, and expand the open-source project. CWatM also strives to build a community learning environment which is able to freely use an open-source hydrological model and flexible coupling possibilities to other sectoral models, such as energy and agriculture.
  • Item
    Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication
    (Katlenburg-Lindau : Copernicus, 2021-6-24) Telteu, Camelia-Eliza; Müller Schmied, Hannes; Thiery, Wim; Leng, Guoyong; Burek, Peter; Liu, Xingcai; Boulange, Julien Eric Stanislas; Andersen, Lauren Seaby; Grillakis, Manolis; Gosling, Simon Newland; Satoh, Yusuke; Rakovec, Oldrich; Stacke, Tobias; Chang, Jinfeng; Wanders, Niko; Shah, Harsh Lovekumar; Trautmann, Tim; Mao, Ganquan; Hanasaki, Naota; Koutroulis, Aristeidis; Pokhrel, Yadu; Samaniego, Luis; Wada, Yoshihide; Mishra, Vimal; Liu, Junguo; Döll, Petra; Zhao, Fang; Gädeke, Anne; Rabin, Sam S.; Herz, Florian
    Global water models (GWMs) simulate the terrestrial water cycle on the global scale and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modelling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how 16 state-of-the-art GWMs are designed. We analyse water storage compartments, water flows, and human water use sectors included in models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to enhance model intercomparison, improvement, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Six models used six compartments, while four models (DBH, JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. We conclude that, even though hydrological processes are often based on similar equations for various processes, in the end these equations have been adjusted or models have used different values for specific parameters or specific variables. The similarities and differences found among the models analysed in this study are expected to enable us to reduce the uncertainty in multi-model ensembles, improve existing hydrological processes, and integrate new processes.
  • Item
    Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
    (Munich : EGU, 2021) Reinecke, Robert; Müller Schmied, Hannes; Trautmann, Tim; Andersen, Lauren Seaby; Burek, Peter; Flörke, Martina; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Koutroulis, Aristeidis; Pokhrel, Yadu; Thiery, Wim; Wada, Yoshihide; Yusuke, Satoh; Döll, Petra
    Billions of people rely on groundwater as being an accessible source of drinking water and for irrigation, especially in times of drought. Its importance will likely increase with a changing climate. It is still unclear, however, how climate change will impact groundwater systems globally and, thus, the availability of this vital resource. Groundwater recharge is an important indicator for groundwater availability, but it is a water flux that is difficult to estimate as uncertainties in the water balance accumulate, leading to possibly large errors in particular in dry regions. This study investigates uncertainties in groundwater recharge projections using a multi-model ensemble of eight global hydrological models (GHMs) that are driven by the bias-adjusted output of four global circulation models (GCMs). Pre-industrial and current groundwater recharge values are compared with recharge for different global warming (GW) levels as a result of three representative concentration pathways (RCPs). Results suggest that projected changes strongly vary among the different GHM–GCM combinations, and statistically significant changes are only computed for a few regions of the world. Statistically significant GWR increases are projected for northern Europe and some parts of the Arctic, East Africa, and India. Statistically significant decreases are simulated in southern Chile, parts of Brazil, central USA, the Mediterranean, and southeastern China. In some regions, reversals of groundwater recharge trends can be observed with global warming. Because most GHMs do not simulate the impact of changing atmospheric CO2 and climate on vegetation and, thus, evapotranspiration, we investigate how estimated changes in GWR are affected by the inclusion of these processes. In some regions, inclusion leads to differences in groundwater recharge changes of up to 100 mm per year. Most GHMs with active vegetation simulate less severe decreases in groundwater recharge than GHMs without active vegetation and, in some regions, even increases instead of decreases are simulated. However, in regions where GCMs predict decreases in precipitation and where groundwater availability is the most important, model agreement among GHMs with active vegetation is the lowest. Overall, large uncertainties in the model outcomes suggest that additional research on simulating groundwater processes in GHMs is necessary.