Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films

2022, Makushko, Pavlo, Kosub, Tobias, Pylypovskyi, Oleksandr V., Hedrich, Natascha, Li, Jiang, Pashkin, Alexej, Avdoshenko, Stanislav, Hübner, René, Ganss, Fabian, Wolf, Daniel, Lubk, Axel, Liedke, Maciej Oskar, Butterling, Maik, Wagner, Andreas, Wagner, Kai, Shields, Brendan J., Lehmann, Paul, Veremchuk, Igor, Fassbender, Jürgen, Maletinsky, Patrick, Makarov, Denys

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 μB nm−2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

Loading...
Thumbnail Image
Item

Chemical in-depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X-ray photoelectron spectroscopy with tunable excitation energy

2021, Müller, Anja, Krahl, Thoralf, Radnik, Jörg, Wagner, Andreas, Kreyenschulte, Carsten, Werner, Wolfgang S.M., Ritter, Benjamin, Kemnitz, Erhard, Unger, Wolfgang E.S.

The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology.