Search Results

Now showing 1 - 8 of 8
  • Item
    A kinetic model of a polyelectrolyte gel undergoing phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Celora, Giulia L.; Hennessy, Matthew G.; Münch, Andreas; Wagner, Barbara; Waters, Sarah L.
    In this study we use non-equilibrium thermodynamics to systematically derive a phase-field model of a polyelectrolyte gel coupled to a thermodynamically consistent model for the salt solution surrounding the gel. The governing equations for the gel account for the free energy of the internal interfaces which form upon phase separation, as well as finite elasticity and multi-component transport. The fully time-dependent model describes the evolution of small changes in the mobile ion concentrations and follows their impact on the large-scale solvent flux and the emergence of long-time pattern formation in the gel. We observe a strong acceleration of the evolution of the free surface when the volume phase transition sets in, as well as the triggering of spinodal decomposition that leads to strong inhomogeneities in the lateral stresses, potentially leading to experimentally visible patterns.
  • Item
    Asymptotic study of the electric double layer at the interface of a polyelectrolyte gel and solvent bath
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hennessy, Matthew G.; Celora, Giulia L.; Münch, Andreas; Waters, Sarah L.; Wagner, Barbara
    An asymptotic framework is developed to study electric double layers that form at the inter-face between a solvent bath and a polyelectrolyte gel that can undergo phase separation. The kinetic model for the gel accounts for the finite strain of polyelectrolyte chains, free energy ofinternal interfaces, and Stefan?Maxwell diffusion. By assuming that the thickness of the doublelayer is small compared to the typical size of the gel, matched asymptotic expansions are used toderive electroneutral models with consistent jump conditions across the gel-bath interface in two-dimensional plane-strain as well as fully three-dimensional settings. The asymptotic frameworkis then applied to cylindrical gels that undergo volume phase transitions. The analysis indicatesthat Maxwell stresses are responsible for generating large compressive hoop stresses in the double layer of the gel when it is in the collapsed state, potentially leading to localised mechanicalinstabilities that cannot occur when the gel is in the swollen state. When the energy cost of in-ternal interfaces is sufficiently weak, a sharp transition between electrically neutral and chargedregions of the gel can occur. This transition truncates the double layer and causes it to have finitethickness. Moreover, phase separation within the double layer can occur. Both of these featuresare suppressed if the energy cost of internal interfaces is sufficiently high. Thus, interfacial freeenergy plays a critical role in controlling the structure of the double layer in the gel.
  • Item
    Self-consistent field theory for a polymer brush. Part II: The effective chemical potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Münch, Andreas; Wagner, Barbara
    The most successful mean-field model to describe the collective behaviour of the large class of macromolecular polymers is the self-consistent field theory (SCFT). Still, even for the simple system of a grafted dry polymer brush, the mean-field equations have to be solved numerically. As one of very few alternatives that offer some analytical tractability the strong-stretching theory (SST) has led to explicit expressions for the effective chemical potential and consequently the free energy to promote an understanding of the underlying physics. Yet, a direct derivation of these analytical results from the SCFT model is still outstanding. In this study we present a systematic asymptotic theory based on matched asymtptotic expansions to obtain the effective chemical potential from the SCFT model for a dry polymer brush for large but finite stretching.
  • Item
    Predicting disordered regions driving phase separation of proteins under variable salt concentration
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Meca, Esteban; Fritsch, Anatol W.; Iglesias--Artola, Juan; Reber, Simone; Wagner, Barbara
    We determine the intrinsically disordered regions (IDRs) of phase separating proteins and investigate their impact on liquid-liquid phase separation (LLPS) with a random-phase approx- imation (RPA) that accounts for variable salt concentration. We focus on two proteins, PGL-3 and FUS, known to undergo LLPS. For PGL-3 we predict that an IDR near the C-terminus pro- motes LLPS, which we validate through direct comparison with in vitro experimental results. For the structurally more complex protein FUS the role of the low complexity (LC) domain in LLPS is not as well understood. Apart from the LC domain we here identify two IDRs, one near the N-terminus and another near the C-terminus. Our RPA analysis of these domains predict that, surprisingly, the IDR at the N-terminus (aa 1-285) and not the LC domain promotes LLPS of FUS by comparison to in vitro experiments under physiological temperature and salt conditions.
  • Item
    On the spinodal dewetting of thin liquid bilayers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Shiri, Roghayeh; Schmeller, Leonie; Seemann, Ralf; Peschka, Dirk; Wagner, Barbara
    We investigate the spinodal dewetting of a thin liquid polystyrene (PS) film on a liquid polymethylmethacrylate (PMMA) subtrate. Following the evolution of the corrugations of the PS film via in situ measurements by atomic force microscopy (AFM) and those of the PS-PMMA interface via ex situ imaging, we provide a direct and detailed comparison of the experimentally determined spinodal wavelengths with the predictions from linear stability analysis of a thin-film continuum model for the bilayer system. The impact of rough interfaces and fluctuations is studied theoretically by investigating the impact of different choices of initial data on the unstable wavelength and on the rupture time. The key factor is the mode selection by initial data perturbed with correlated colored noise in the linearly unstable regime, which becomes relevant only for liquid bilayers to such an extent. By numerically solving the mathematical model, we further address the impact of nonlinear effects on rupture times and on the morphological evolution of the interfaces in comparison with experimental results.
  • Item
    Self-consistent field theory for a polymer brush. Part I: Asymptotic analysis in the strong-stretching limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Münch, Andreas; Wagner, Barbara
    In this study we consider the self-consistent field theory for a dry, in- compressible polymer brush, densely grafted on a substrate, describing the average segment density of a polymer in terms of an effective chemical potential for the interaction between the segments of the polymer chain. We present a systematic singular perturbation analysis of the self-consistent field theory in the strong-stretching limit, when the length scale of the ratio of the radius of gyration of the polymer chain to the extension of the brush from the substrate vanishes. Our analysis yields, for the first time, an approximation for the average segment density that is correct to leading order in the outer scaling and resolves the boundary layer singularity at the end of the polymer brush in the strong-stretching limit. We also show that in this limit our analytical results agree increasingly well with our numerical solutions to the full model equations comprising the self-consistent field theory.
  • Item
    Spinodal decomposition and collapse of a polyelectrolyte gel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Celora, Giulia L.; Hennessy, Matthew G.; Münch, Andreas; Waters, Sarah L.; Wagner, Barbara
    The collapse of a polyelectrolyte gel in a (monovalent) salt solution is analysed using a new model that includes interfacial gradient energy to account for phase separation in the gel, finite elasticity and multicomponent transport. We carry out a linear stability analysis to determine the stable and unstable spatially homogeneous equilibrium states and how they phase separate into localized regions that eventually coarsen to a new stable state. We then investigate the problem of a collapsing gel as a response to increasing the salt concentration in the bath. A phase space analysis reveals that the collapse is obtained by a front moving through the gel that eventually ends in a new stable equilibrium. For some parameter ranges, these two routes to gel shrinking occur together.
  • Item
    Sharp-interface problem of the Ohta--Kawasaki model for symmetric diblock copolymers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Barua, Amlam K.; Chew, Ray; Shuwang, Li; Lowengrub, John; Münch, Andreas; Wagner, Barbara
    The Ohta-Kawasaki model for diblock-copolymers is well known to the scientific community of diffuse-interface methods. To accurately capture the long-time evolution of the moving interfaces, we present a derivation of the corresponding sharp-interface limit using matched asymptotic expansions, and show that the limiting process leads to a Hele-Shaw type moving interface problem. The numerical treatment of the sharp-interface limit is more complicated due to the stiffness of the equations. To address this problem, we present a boundary integral formulation corresponding to a sharp interface limit of the Ohta-Kawasaki model. Starting with the governing equations defined on separate phase domains, we develop boundary integral equations valid for multi-connected domains in a 2D plane. For numerical simplicity we assume our problem is driven by a uniform Dirichlet condition on a circular far-field boundary. The integral formulation of the problem involves both double- and single-layer potentials due to the modified boundary condition. In particular, our formulation allows one to compute the nonlinear dynamics of a non-equilibrium system and pattern formation of an equilibrating system. Numerical tests on an evolving slightly perturbed circular interface (separating the two phases) are in excellent agreement with the linear analysis, demonstrating that the method is stable, efficient and spectrally accurate in space.