Search Results

Now showing 1 - 2 of 2
  • Item
    Stationary solutions for two-layer lubrication equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Jachalski, Sebastian; Huth, Robert; Kitavtsev, Georgy; Peschka, Dirk; Wagner, Barbara
    We investigate stationary solutions of flows of thin liquid bilayers in an energetic formulation which is motivated by the gradient flow structure of its lubrication approximation. The corresponding energy favors the liquid substrate to be only partially covered by the upper liquid. This is expressed by a negative spreading coefficient which arises from an intermolecular potential combining attractive and repulsive forces and leads to an ultra-thin layer of thickness e. For the corresponding lubrication models existence of stationary solutions is proven. In the limit e to 0 matched asymptotic analysis is applied to derive sharp-interface models and the corresponding contact angles, i.e. the Neumann triangle. In addition we use G-convergence and derive the equivalent sharp-interface models rigorously in this limit. For the resulting model existence and uniqueness of energetic minimizers are proven. The minimizers agree with solutions obtained by matched asymptotics.
  • Item
    Models for the two-phase flow of concentrated suspensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Ahnert, Tobias; Münch, Andreas; Wagner, Barbara
    A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model naturally exhibits a Bingham-type flow property. This property is investigated in detail for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the center of the channel. For the steady state of this problem, the governing equation are reduced to a boundary value problem for a system of ordinary differential equations and the dependence of its solutions are analyzed by using phase-space methods. For the general time-dependent case a new drift-flux model is derived for the first time using matched asymptotic expansions that take account of the boundary layers at the walls and the interface between the yielded and unyielded region. Using the drift-flux model, the behavior of the suspension flow, in particular the appearance and evolution of unyielded or jammed regions is then studied numerically for different choices of the parameters.