Search Results

Now showing 1 - 10 of 34
  • Item
    Dynamic formation of oriented patches in chondrocyte cell cultures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Grote, Marcus; Palumberi, Viviana; Wagner, Barbara; Barbero, Andrea; Martin, Ivan
    Growth factors have a significant impact not only on the growth dynamics but also on the phenotype of chondrocytes (Barbero et al. , J. Cell. Phys. 204, pp. 830-838, 2005). In particular, as chondrocyte populations approach confluence, the cells tend to align and form coherent patches. Starting from a mathematical model for fibroblast populations at equilibrium (Mogilner et al., Physica D 89, pp. 346-367, 1996), a dynamic continuum model with logistic growth is developed. Both linear stability analysis and numerical solutions of the time-dependent nonlinear integro-partial differential equation are used to identify the key parameters that lead to pattern formation in the model. The numerical results are compared quantitatively to experimental data by extracting statistical information on orientation, density and patch size through Gabor filters.
  • Item
    Signatures of slip in dewetting polymer films
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Peschka, Dirk; Haefner, Sabrina; Jacobs, Karin; Münch, Andreas; Wagner, Barbara
    Thin liquid polymer films on hydrophobic substrates are susceptable to rupture and formation of holes, which in turn initiate a complex dewetting process that eventually evolves into characteristic stationary droplet patterns. Experimental and theoretical studies suggest that the specific type of droplet pattern largely depends on the nature of the polymer-substrate boundary condition. To follow the morphological evolution numerically over long time scales and for the multiple length scales involved has so far been a major challenge. In this study a highly adaptive finite-element based numerical scheme is presented that allows for large-scale simulations to follow the evolution of the dewetting process deep into the nonlinear regime of the model equations, capturing the complex dynamics including shedding of droplets. In addition, the numerical results predict the previouly unknown shedding of satellite droplets during the destabilisation of liquid ridges, that form during the late stages of the dewetting process. While the formation of satellite droplets is well-known in the context of elongating fluid filaments and jets, we show here that for dewetting liquid ridges this property can be dramatically altered by the interfacial condition between polymer and substrate, namely slip.
  • Item
    A phase-field model for solid-state dewetting and its sharp-interface limit
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dziwnik, Marion; Münch, Andreas; Wagner, Barbara
    We propose a phase field model for solid state dewetting in form of a Cahn-Hilliard equation with weakly anisotropic surface energy and a degenerate mobility together with a free boundary condition at the film-substrate contact line. We derive the corresponding sharp interface limit via matched asymptotic analysis involving multiple inner layers. The resulting sharp interface model is consistent with the pure surface diffusion model. In addition, we show that the natural boundary conditions, as indicated from the first variation of the total free energy, imply a contact angle condition for the dewetting front, which, in the isotropic case, is consistent with the well-known Young's equation
  • Item
    Stationary solutions for two-layer lubrication equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Jachalski, Sebastian; Huth, Robert; Kitavtsev, Georgy; Peschka, Dirk; Wagner, Barbara
    We investigate stationary solutions of flows of thin liquid bilayers in an energetic formulation which is motivated by the gradient flow structure of its lubrication approximation. The corresponding energy favors the liquid substrate to be only partially covered by the upper liquid. This is expressed by a negative spreading coefficient which arises from an intermolecular potential combining attractive and repulsive forces and leads to an ultra-thin layer of thickness e. For the corresponding lubrication models existence of stationary solutions is proven. In the limit e to 0 matched asymptotic analysis is applied to derive sharp-interface models and the corresponding contact angles, i.e. the Neumann triangle. In addition we use G-convergence and derive the equivalent sharp-interface models rigorously in this limit. For the resulting model existence and uniqueness of energetic minimizers are proven. The minimizers agree with solutions obtained by matched asymptotics.
  • Item
    Stability of concentrated suspensions under Couette and Poiseuille flow
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Ahnert, Tobias; Münch, Andreas; Niethammer, Barbara; Wagner, Barbara
    The stability of two-dimensional Poiseuille flow and plane Couette flow for concentrated suspensions is investigated. Linear stability analysis of the twophase flow model for both flow geometries shows the existence of a convectively driven instability with increasing growth rates of the unstable modes as the particle volume fraction of the suspension increases. In addition it is shown that there exists a bound for the particle phase viscosity below which the two-phase flow model may become ill-posed as the particle phase approaches its maximum packing fraction. The case of two-dimensional Poiseuille flow gives rise to base state solutions that exhibit a jammed and unyielded region, due to shear-induced migration, as the maximum packing fraction is approached. The stability characteristics of the resulting Bingham-type flow is investigated and connections to the stability problem for the related classical Bingham-flow problem are discussed.
  • Item
    Thin film models for an active gel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Kitavtsev, Georgy; Münch, Andreas; Wagner, Barbara
    In this study we present a free-boundary problem for an active liquid crystal based on the Beris-Edwards theory that uses a tensorial order parameter and includes active contributions to the stress tensor to analyse the rich defect structure observed in applications such as the Adenosinetriphosphate (ATP) driven motion of a thin film of an actin filament network. The small aspect ratio of the film geometry allows for an asymptotic approximation of the free-boundary problem in the limit of weak elasticity of the network and strong active terms. The new thin film model captures the defect dynamics in the bulk as well as wall defects and thus presents a significant extension of previous models based on the Leslie-Erickson-Parodi theory. Analytic expressions are derived that reveal the interplay of anchoring conditions, film thickness and active terms and their control of transitions of flow structure.
  • Item
    Models for the two-phase flow of concentrated suspensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Ahnert, Tobias; Münch, Andreas; Wagner, Barbara
    A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model naturally exhibits a Bingham-type flow property. This property is investigated in detail for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the center of the channel. For the steady state of this problem, the governing equation are reduced to a boundary value problem for a system of ordinary differential equations and the dependence of its solutions are analyzed by using phase-space methods. For the general time-dependent case a new drift-flux model is derived for the first time using matched asymptotic expansions that take account of the boundary layers at the walls and the interface between the yielded and unyielded region. Using the drift-flux model, the behavior of the suspension flow, in particular the appearance and evolution of unyielded or jammed regions is then studied numerically for different choices of the parameters.
  • Item
    Interface morphologies in liquid/liquid dewetting
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Kostourou, Konstantina; Peschka, Dirk; Münch, Andreas; Wagner, Barbara; Herminghaus, Stephan; Seemann, Ralf
    The dynamics and morphology of a liquid polystyrene (PS) film on the scale of a hundred nanometer dewetting from a liquid polymethylmethacrylate (PMMA) film is investigated experimentally and theoretically. The polymers considered here are both below their entanglement lengths and have negligible elastic properties. A theoretical model based on viscous Newtonian flow for both polymers is set up from which a system of coupled lubrication equations is derived and solved numerically. A direct comparison of the numerical solution with the experimental findings for the characteristic signatures of the cross-sections of liquid/air and liquid/liquid phase boundaries of the dewetting rims as well as the dewetting rates is performed and discussed for various viscosity ratios of the PS and PMMA layers.
  • Item
    Impact of interfacial slip on the stability of liquid two-layer polymer films
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Jachalski, Sebastian; Peschka, Dirk; Münch, Andreas; Wagner, Barbara
    In this study systems of coupled thin-film models for two immiscible liquid polymer layers on a solid substrate that account for interfacial slip and intermolecular forces are derived. On the scale of tens to hundred nanometers such two-layer systems are susceptable to instability and may rupture and dewet. The stability of the two-layer system and its significant dependence on the order of magnitude of slip is investigated via these thin-film models. With no-slip at both, the liquid-liquid and liquid-solid interface and polymer layers of comparable thickness, the dispersion relation typically shows two local maxima, one in the long-wave regime and the other at moderate wavenumbers. The former is associated with perturbations that mainly affect the gas-liquid interface and the latter with higher relative perturbation amplitudes at the liquid-liquid interface. Slip at the liquid-liquid interface generally favors the former perturbations. However, when the liquid-liquid and the liquidsolid interface exhibit large slip, the maxima shift to small wavenumbers for increasing slip and hence may significantly change the spinodal patterns.
  • Item
    Thin-film models for viscoelastic liquid bi-layers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Jachalski, Sebastian; Münch, Andreas; Wagner, Barbara
    In this work we consider a two-layer system of viscoelastic liquids of corotational Jeffreys type dewetting from a Newtonian liquid substrates. We derive conditions that allow for the first time the asymptotically consistent reduction of the free boundary problem for the two-layer system to a system of coupled thin-film equations that incorporate the full nonlinear viscoelastic rheology. We show that these conditions are controlled by the order of magnitude of the viscosity ratio of the liquid layers and their thickness ratio. For pure Newtonian flow, these conditions lead to a thin-film model that couples a layer with a parabolic flow field to a layer described by elongational flow. For this system we establish asymptotic regimes that relate the viscosity ratio to a corresponding apparent slip. We then use numerical simulations to discuss the characteristic morphological and dynamical properties of viscoelastic films of corotational Jeffreys type dewetting from a solid as well as liquid substrate.