Search Results

Now showing 1 - 2 of 2
  • Item
    Temperature dependence of the Seebeck coefficient of epitaxial β -Ga2O3 thin films
    (Melville, NY : AIP Publ., 2019) Boy, Johannes; Handwerg, Martin; Ahrling, Robin; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the Seebeck coefficient of homoepitaxial metal organic vapor phase grown, silicon doped β-Ga 2 O 3 thin films was measured relative to aluminum. For room temperature, we found the relative Seebeck coefficient of Sβ-Ga2O3-Al=(-300±20) μV/K. At high bath temperatures T > 240 K, the scattering is determined by electron-phonon-interaction. At lower bath temperatures between T = 100 K and T = 300 K, an increase in the magnitude of the Seebeck coefficient is explained in the frame of Stratton's formula. The influence of different scattering mechanisms on the magnitude of the Seebeck coefficient is discussed and compared with Hall measurement results. © 2019 Author(s).
  • Item
    Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates
    (Bristol : IOP Publ., 2019) Liddy, Kyle J.; Green, Andrew J.; Hendricks, Nolan S.; Heller, Eric R.; Moser, Neil A.; Leedy, Kevin D.; Popp, Andreas; Lindquist, Miles T.; Tetlak, Stephen E.; Wagner, Günter
    We report the first demonstration of self-aligned gate (SAG) β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) as a path toward eliminating source access resistance for low-loss power applications. The SAG process is implemented with a subtractively defined and etched refractory metal, such as Tungsten, combined with ion-implantation. We report experimental and modeled DC performance of a representative SAG device that achieved a maximum transconductance of 35 mS mm-1 and an on-resistance of ∼30 Ω mm with a 2.5 μm gate length. These results highlight the advantage of implant technology for SAG β-Ga2O3 MOSFETs enabling future power switching and RF devices with low parasitic resistance. © Not subject to copyright in the USA. Contribution of Wright-Patterson AFB.