Search Results

Now showing 1 - 4 of 4
  • Item
    Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust
    (München : European Geopyhsical Union, 2013) Wagner, J.; Ansmann, A.; Wandinger, U.; Seifert, P.; Schwarz, A.; Tesche, M.; Chaikovsky, A.; Dubovik, O.
    The Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for fine-mode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical properties of irregularly shaped dust particles. The method is applied to two very different aerosol scenarios: a strong Saharan dust outbreak towards central Europe and an Eyjafjallajökull volcanic dust event. LIRIC profiles of particle mass concentrations for the coarse-mode as well as for the non-spherical particle fraction are compared with results for the non-spherical particle fraction as obtained with the polarization-lidar-based POLIPHON method. Similar comparisons for fine-mode and spherical particle fractions are presented also. Acceptable agreement between the different dust mass concentration profiles is obtained. LIRIC profiles of optical properties such as particle backscatter coefficient, lidar ratio, Ångström exponent, and particle depolarization ratio are compared with direct Raman lidar observations. Systematic deviations between the LIRIC retrieval products and the Raman lidar measurements of the desert dust lidar ratio, depolarization ratio, and spectral dependencies of particle backscatter and lidar ratio point to the applied spheroidal-particle model as main source for these uncertainties in the LIRIC results.
  • Item
    Evaluation of wake influence on high-resolution balloon-sonde measurements
    (Göttingen : Copernicus GmbH, 2019) Söder, J.; Gerding, M.; Schneider, A.; Dörnbrack, A.; Wilms, H.; Wagner, J.; Lübken, F.-J.
    Balloons are used for various in situ measurements in the atmosphere. On turbulence measurements from rising balloons there is a potential for misinterpreting wake-created fluctuations in the trail of the balloon for atmospheric turbulence. These wake effects have an influence on temperature and humidity measurements from radiosondes as well. The primary aim of this study is to assess the likelihood for wake encounter on the payload below a rising balloon. Therefore, we present a tool for calculating this probability based on radiosonde wind data. This includes a retrieval of vertical winds from the radiosonde and an uncertainty analysis of the wake assessment. Our wake evaluation tool may be used for any balloon-gondola distance and provides a significant refinement compared to existing assessments. We have analysed wake effects for various balloon-gondola distances applying atmospheric background conditions from a set of 30 radiosondes. For a standard radiosonde we find an average probability for wake encounter of 28 %, pointing out the importance of estimating wake effects on sounding balloons. Furthermore, we find that even millimetre-sized objects in the payload can have significant effects on high-resolution turbulence measurements, if they are located upstream of the turbulence sensor. © Author(s) 2019. This work is distributed under.
  • Item
    Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems
    (New York : Hindawi, 2007) Köhler, J.M.; Romanus, H.; Hübner, U.; Wagner, J.
    Regular dendrit-like metal nanoparticles and core-shell nanoparticles were formed by the reduction of mixtures of tetrachloroaurate and silver nitrate solutions with ascorbic acid at room temperature in two- and three-step procedures. The formation of these particles was found in batch experiments as well as in micro flow-through processes using static micromixers. The characteristic diameters of 4-branched star particles were in the range between 60 and 100 nm. The typical particles consist of four metal cores which are embedded in a common shell. Additionally, particles with five and more metallic cores were formed, to some extent, and aggregates of the 4-branched particles also were formed. Larger aggregates and network-like structures of connected star particles were formed after sedimentation. The properties of the formed particles are dependent on the educt concentrations as well as on the order of mixing steps and on the time interval between them. Obviously, the relation of nucleation and particle growth in relation to the concentrations of metal ions determines the composition and the properties of formed nanoparticles. So, star-like particles are observed in case of nucleation of Au in absence of silver ions but with silver deposition after short nucleation time. Spherical core shell particles are formed in case of silver salt addition after complete reduction of tetrachloroaurate in flow-through experiments with sufficient residence time between both mixing steps. Polymer layers are always found in the form of a second outer shell even if the polymer solutions are added in an early stage of particle formation.
  • Item
    Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability
    (Göttingen : Copernicus GmbH, 2012) Donner, R.V.; Ehrcke, R.; Barbosa, S.M.; Wagner, J.; Donges, J.F.; Kurths, J.
    The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.