Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements

2018, DeMott, Paul J., Möhler, Ottmar, Cziczo, Daniel J., Hiranuma, Naruki, Petters, Markus D., Petters, Sarah S., Belosi, Franco, Bingemer, Heinz G., Brooks, Sarah D., Budke, Carsten, Burkert-Kohn, Monika, Collier, Kristen N., Danielczok, Anja, Eppers, Oliver, Felgitsch, Laura, Garimella, Sarvesh, Grothe, Hinrich, Herenz, Paul, Hill, Thomas C. J., Höhler, Kristina, Kanji, Zamin A., Kiselev, Alexei, Koop, Thomas, Kristensen, Thomas B., Krüger, Konstantin, Kulkarni, Gourihar, Levin, Ezra J. T., Murray, Benjamin J., Nicosia, Alessia, O'Sullivan, Daniel, Peckhaus, Andreas, Polen, Michael J., Price, Hannah C., Reicher, Naama, Rothenberg, Daniel A., Rudich, Yinon, Santachiara, Gianni, Schiebel, Thea, Schrod, Jann, Seifried, Teresa M., Stratmann, Frank, Sullivan, Ryan C., Suski, Kaitlyn J., Szakáll, Miklós, Taylor, Hans P., Ullrich, Romy, Vergara-Temprado, Jesus, Wagner, Robert, Whale, Thomas F., Weber, Daniel, Welti, André, Wilson, Theodore W., Wolf, Martin J., Zenker, Jake

The second phase of the Fifth International Ice Nucleation Workshop (FIN-02) involved the gathering of a large number of researchers at the Karlsruhe Institute of Technology's Aerosol Interactions and Dynamics of the Atmosphere (AIDA) facility to promote characterization and understanding of ice nucleation measurements made by a variety of methods used worldwide. Compared to the previous workshop in 2007, participation was doubled, reflecting a vibrant research area. Experimental methods involved sampling of aerosol particles by direct processing ice nucleation measuring systems from the same volume of air in separate experiments using different ice nucleating particle (INP) types, and collections of aerosol particle samples onto filters or into liquid for sharing amongst measurement techniques that post-process these samples. In this manner, any errors introduced by differences in generation methods when samples are shared across laboratories were mitigated. Furthermore, as much as possible, aerosol particle size distribution was controlled so that the size limitations of different methods were minimized. The results presented here use data from the workshop to assess the comparability of immersion freezing measurement methods activating INPs in bulk suspensions, methods that activate INPs in condensation and/or immersion freezing modes as single particles on a substrate, continuous flow diffusion chambers (CFDCs) directly sampling and processing particles well above water saturation to maximize immersion and subsequent freezing of aerosol particles, and expansion cloud chamber simulations in which liquid cloud droplets were first activated on aerosol particles prior to freezing. The AIDA expansion chamber measurements are expected to be the closest representation to INP activation in atmospheric cloud parcels in these comparisons, due to exposing particles freely to adiabatic cooling. The different particle types used as INPs included the minerals illite NX and potassium feldspar (K-feldspar), two natural soil dusts representative of arable sandy loam (Argentina) and highly erodible sandy dryland (Tunisia) soils, respectively, and a bacterial INP (Snomax®). Considered together, the agreement among post-processed immersion freezing measurements of the numbers and fractions of particles active at different temperatures following bulk collection of particles into liquid was excellent, with possible temperature uncertainties inferred to be a key factor in determining INP uncertainties. Collection onto filters for rinsing versus directly into liquid in impingers made little difference. For methods that activated collected single particles on a substrate at a controlled humidity at or above water saturation, agreement with immersion freezing methods was good in most cases, but was biased low in a few others for reasons that have not been resolved, but could relate to water vapor competition effects. Amongst CFDC-style instruments, various factors requiring (variable) higher supersaturations to achieve equivalent immersion freezing activation dominate the uncertainty between these measurements, and for comparison with bulk immersion freezing methods. When operated above water saturation to include assessment of immersion freezing, CFDC measurements often measured at or above the upper bound of immersion freezing device measurements, but often underestimated INP concentration in comparison to an immersion freezing method that first activates all particles into liquid droplets prior to cooling (the PIMCA-PINC device, or Portable Immersion Mode Cooling chAmber-Portable Ice Nucleation Chamber), and typically slightly underestimated INP number concentrations in comparison to cloud parcel expansions in the AIDA chamber; this can be largely mitigated when it is possible to raise the relative humidity to sufficiently high values in the CFDCs, although this is not always possible operationally. Correspondence of measurements of INPs among direct sampling and post-processing systems varied depending on the INP type. Agreement was best for Snomax® particles in the temperature regime colder than -10°C, where their ice nucleation activity is nearly maximized and changes very little with temperature. At temperatures warmer than -10°C, Snomax® INP measurements (all via freezing of suspensions) demonstrated discrepancies consistent with previous reports of the instability of its protein aggregates that appear to make it less suitable as a calibration INP at these temperatures. For Argentinian soil dust particles, there was excellent agreement across all measurement methods; measures ranged within 1 order of magnitude for INP number concentrations, active fractions and calculated active site densities over a 25 to 30°C range and 5 to 8 orders of corresponding magnitude change in number concentrations. This was also the case for all temperatures warmer than -25°C in Tunisian dust experiments. In contrast, discrepancies in measurements of INP concentrations or active site densities that exceeded 2 orders of magnitude across a broad range of temperature measurements found at temperatures warmer than -25°C in a previous study were replicated for illite NX. Discrepancies also exceeded 2 orders of magnitude at temperatures of -20 to -25°C for potassium feldspar (K-feldspar), but these coincided with the range of temperatures at which INP concentrations increase rapidly at approximately an order of magnitude per 2°C cooling for K-feldspar. These few discrepancies did not outweigh the overall positive outcomes of the workshop activity, nor the future utility of this data set or future similar efforts for resolving remaining measurement issues. Measurements of the same materials were repeatable over the time of the workshop and demonstrated strong consistency with prior studies, as reflected by agreement of data broadly with parameterizations of different specific or general (e.g., soil dust) aerosol types. The divergent measurements of the INP activity of illite NX by direct versus post-processing methods were not repeated for other particle types, and the Snomax° data demonstrated that, at least for a biological INP type, there is no expected measurement bias between bulk collection and direct immediately processed freezing methods to as warm as -10°C. Since particle size ranges were limited for this workshop, it can be expected that for atmospheric populations of INPs, measurement discrepancies will appear due to the different capabilities of methods for sampling the full aerosol size distribution, or due to limitations on achieving sufficient water supersaturations to fully capture immersion freezing in direct processing instruments. Overall, this workshop presents an improved picture of present capabilities for measuring INPs than in past workshops, and provides direction toward addressing remaining measurement issues.

Loading...
Thumbnail Image
Item

Ion-induced nucleation of pure biogenic particles

2016, Kirkby, Jasper, Duplissy, Jonathan, Sengupta, Kamalika, Gordon, Hamish, Williamson, Christina, Heinritzi, Martin, Simon, Mario, Yan, Chao, Almeida, João, Tröstl, Jasmin, Nieminen, Tuomo, Ortega, Ismael K., Wagner, Robert, Adamov, Alexey, Amorim, Antonio, Bernhammer, Anne-Kathrin, Bianchi, Federico, Breitenlechner, Martin, Brilke, Sophia, Chen, Xuemeng, Craven, Jill, Dias, Antonio, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Hakala, Jani, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lehtipalo, Katrianne, Makhmutov, Vladimir, Mathot, Serge, Molteni, Ugo, Onnela, Antti, Peräkylä, Otso, Piel, Felix, Petäjä, Tuukka, Praplan, Arnaud P., Pringle, Kirsty, Rap, Alexandru, Richards, Nigel A.D., Riipinen, Ilona, Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Scott, Catherine E., Seinfeld, John H., Sipilä, Mikko, Steiner, Gerhard, Stozhkov, Yuri, Stratmann, Frank, Tomé, Antonio, Virtanen, Annele, Vogel, Alexander L., Wagner, Andrea C., Wagner, Paul E., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Zhang, Xuan, Hansel, Armin, Dommen, Josef, Donahue, Neil M., Worsnop, Douglas R., Baltensperger, Urs, Kulmala, Markku, Carslaw, Kenneth S., Curtius, Joachim

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

Loading...
Thumbnail Image
Item

Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

2016, Ignatius, Karoliina, Kristensen, Thomas B., Järvinen, Emma, Nichman, Leonid, Fuchs, Claudia, Gordon, Hamish, Herenz, Paul, Hoyle, Christopher R., Duplissy, Jonathan, Garimella, Sarvesh, Dias, Antonio, Frege, Carla, Höppel, Niko, Tröstl, Jasmin, Wagner, Robert, Yan, Chao, Amorim, Antonio, Baltensperger, Urs, Curtius, Joachim, Donahue, Neil M., Gallagher, Martin W., Kirkby, Jasper, Kulmala, Markku, Möhler, Ottmar, Saathoff, Harald, Schnaiter, Martin, Dulac, François, Tomé, Antonio, Virtanen, Annele, Worsnop, Douglas, Stratmann, Frank

There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

Loading...
Thumbnail Image
Item

Microbial Control of Raw and Cold-Smoked Atlantic Salmon (Salmo salar) through a Microwave Plasma Treatment

2022, Weihe, Thomas, Wagner, Robert, Schnabel, Uta, Andrasch, Mathias, Su, Yukun, Stachowiak, Jörg, Noll, Heinz Jörg, Ehlbeck, Jörg

The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.

Loading...
Thumbnail Image
Item

Causes and importance of new particle formation in the present-day and preindustrial atmospheres

2017, Gordon, Hamish, Kirkby, Jasper, Baltensperger, Urs, Bianchi, Federico, Breitenlechner, Martin, Curtius, Joachim, Dias, Antonio, Dommen, Josef, Donahue, Neil M., Dunne, Eimear M., Duplissy, Jonathan, Ehrhart, Sebastian, Flagan, Richard C., Frege, Carla, Fuchs, Claudia, Hansel, Armin, Hoyle, Christopher R., Kulmala, Markku, Kürten, Andreas, Lehtipalo, Katrianne, Makhmutov, Vladimir, Molteni, Ugo, Rissanen, Matti P., Stozkhov, Yuri, Tröstl, Jasmin, Tsagkogeorgas, Georgios, Wagner, Robert, Williamson, Christina, Wimmer, Daniela, Winkler, Paul M., Yan, Chao, Carslaw, Ken S.

New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the preindustrial atmospheres. We use a global aerosol model with parametrizations of NPF from previously published CLOUD chamber experiments involving sulfuric acid, ammonia, organic molecules, and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the preindustrial atmosphere (estimated uncertainty range 45–84%) and 54% in the present day (estimated uncertainty range 38–66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the preindustrial. Around three quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of preindustrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions.

Loading...
Thumbnail Image
Item

Study of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditions

2020, Nishime, Thalita M.C., Wagner, Robert, Kostov, Konstantin G.

In the last decade atmospheric pressure plasma jets (APPJs) have been routinely employed for surface processing of polymers due to their capability of generating very reactive chemistry at near-ambient temperature conditions. Usually, the plasma jet modification effect spans over a limited area (typically a few cm²), therefore, for industrial applications, where treatment of large and irregular surfaces is needed, jet and/or sample manipulations are required. More specifically, for treating hollow objects, like pipes and containers, the plasma jet must be introduced inside of them. In this case, a normal jet incidence to treated surface is difficult if not impossible to maintain. In this paper, a plasma jet produced at the end of a long flexible plastic tube was used to treat polyethylene terephthalate (PET) samples with different incidence angles and using different process parameters. Decreasing the angle formed between the plasma plume and the substrate leads to increase in the modified area as detected by surface wettability analysis. The same trend was confirmed by the distribution of reactive oxygen species (ROS), expanding on starch-iodine-agar plates, where a greater area was covered when the APPJ was tilted. Additionally, UV-VUV irradiation profiles obtained from the plasma jet spreading on the surface confirms such behavior.

Loading...
Thumbnail Image
Item

Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

2016, Nichman, Leonid, Fuchs, Claudia, Järvinen, Emma, Ignatius, Karoliina, Höppel, Niko Florian, Dias, Antonio, Heinritzi, Martin, Simon, Mario, Tröstl, Jasmin, Wagner, Andrea Christine, Wagner, Robert, Williamson, Christina, Yan, Chao, Connolly, Paul James, Dorsey, James Robert, Duplissy, Jonathan, Ehrhart, Sebastian, Frege, Carla, Gordon, Hamish, Hoyle, Christopher Robert, Kristensen, Thomas Bjerring, Steiner, Gerhard, McPherson Donahue, Neil, Flagan, Richard, Gallagher, Martin William, Kirkby, Jasper, Möhler, Ottmar, Saathoff, Harald, Schnaiter, Martin, Stratmann, Frank, Tomé, António

Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid–viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8–9 campaigns and its potential contribution to tropical troposphere layer analysis.

Loading...
Thumbnail Image
Item

Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination

2021, Wannicke, Nicola, Wagner, Robert, Stachowiak, Joerg, Nishime, Thalita M.C., Ehlbeck, Joerg, Weltmann, Klaus‐Dieter, Brust, Henrike

In this study, the antimicrobial effect of plasma-processed air (PPA) generated by a microwave-induced nonthermal plasma was investigated for preharvest utilization using three crop species: Barley, rape, and lupine. Bacillus atrophaeus spores were chosen as a model, inoculated onto seeds, and subsequently treated with PPA at two different flow rates, different filling regimes, and gas exposure times. PPA treatment was efficient in reducing viable spores of B. atrophaeus, reaching sporicidal effects in all species at certain parameter combinations. Maximum germination of seeds was strongly reduced in barley and rape seeds at some parameter combination, whereas it had a modest effect on lupine seeds. Seed hydrophilicity was not altered. Overall, PPA investigated in this study proved suitable for preharvest applications.

Loading...
Thumbnail Image
Item

Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing

2021, Schnabel, Uta, Balazinski, Martina, Wagner, Robert, Stachowiak, Jörg, Boehm, Daniela, Andrasch, Mathias, Bourke, Paula, Ehlbeck, Jörg

The microbiological profiles and responses of native microflora of endive were investigated using a model process line, to establish where a defined PFW should be optimally applied to retain or improve produce microbiological quality. The PFW processes were compared with tap water and ClO2. The antimicrobial efficacy of PFW was quantified by determining the reduction in microbial load, the microbial viability and vitality. Depending on the stage of application of PFW, up to 5 log10-cycles reduction was achieved, accompanied by a reduction of metabolic activity, but not necessarily with a decrease in metabolic vitality. Multiple application (3-step-PFW-application) was more effective than single application (1-step-PFW-application) and PFW showed stronger antimicrobial effect in pre-cleaned endive. High concentrations of nitrite (315 mg l−1) and nitrate (472 mg l−1) in PFW were the main factors for the antimicrobial efficacy of PFW against bacteria. Furthermore, H2O2 and an acidic pH supported the mechanism of action against the endive microflora. These results identify the pathway to scale up successful industrial application of PFW targeting microbiological quality and safety of fresh leafy products.Industrial relevance The safety, quality and shelf life of freshly cut vegetables, e.g. lettuce, are strongly influenced by the microbial load. In addition, the hygienic design of production line, and a good handling/ production practice are indispensable. This study shows that the application of PFW, as a promising non-thermal sanitation technology, enables the inactivation of native microbial contamination on fresh-cut endive depending on the process stage of application. It further describes the impact of PFW on the metabolic activity and metabolic vitality of the lettuce-associated microflora. For higher acceptance, the mechanism of action of PFW was assumed based on previous chemical analyses and compared to the industrial standard of ClO2. The results contribute to the understanding and product-specificity of PFW-induced effects on safety, quality and shelf life of fresh cut lettuce and could be a basis for a possible industrial implementation and complement of common technologies.

Loading...
Thumbnail Image
Item

Observation of viscosity transition in α-pinene secondary organic aerosol

2016, Järvinen, Emma, Ignatius, Karoliina, Nichman, Leonid, Kristensen, Thomas B., Fuchs, Claudia, Hoyle, Christopher R., Höppel, Niko, Corbin, Joel C., Craven, Jill, Duplissy, Jonathan, Ehrhart, Sebastian, El Haddad, Imad, Frege, Carla, Gordon, Hamish, Jokinen, Tuija, Kallinger, Peter, Kirkby, Jasper, Kiselev, Alexei, Naumann, Karl-Heinz, Petäjä, Tuukka, Pinterich, Tamara, Prevot, Andre S.H., Saathoff, Harald, Schiebel, Thea, Sengupta, Kamalika, Simon, Mario, Slowik, Jay G., Tröstl, Jasmin, Virtanen, Annele, Vochezer, Paul, Vogt, Steffen, Wagner, Andrea C., Wagner, Robert, Williamson, Christina, Winkler, Paul M., Yan, Chao, Baltensperger, Urs, Donahue, Neil M., Flagan, Rick C., Gallagher, Martin, Hansel, Armin, Kulmala, Markku, Stratmann, Frank, Worsnop, Douglas R., Möhler, Ottmar, Leisner, Thomas, Schnaiter, Martin

Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.