Search Results

Now showing 1 - 2 of 2
  • Item
    Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering
    (Basel : MDPI, 2016) Hardy, John G.; Torres-Rendon, Jose Guillermo; Leal-Egaña, Aldo; Walther, Andreas; Schlaad, Helmut; Cölfen, Helmut; Scheibel, Thomas
    Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.
  • Item
    Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017) Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas
    A 3-dimensional Block Copolymer Micellar nanoLithography (BCML) process was used to prepare AuxPt1−x alloy nanoparticles (NPs) monodisperse in size and composition, strongly anchored onto SiO2-particles (0.2 wt.% AuxPt1−x/SiO2). The particles possess a face-centered cubic (fcc) crystal structure and their size could be varied from 3–12 nm. We demonstrate the uniformity of the Au/Pt composition by analyzing individual NPs by energy-dispersive X-ray spectroscopy. The strongly bound AuxPt1−x NPs catalyzed the oxidation of CO with high activity. Thermal ageing experiments in pure CO2 as well as in ambient atmosphere demonstrated stability of the size distribution for times as long as 22 h.