Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Reversibly Photo-Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers

2020, Sun, Jing, Ma, Chao, Maity, Sourav, Wang, Fan, Zhou, Yu, Portale, Giuseppe, Göstl, Robert, Roos, Wouter H., Zhang, Hongjie, Liu, Kai, Herrmann, Andreas

Light-responsive materials have been extensively studied due to the attractive possibility of manipulating their properties with high spatiotemporal control in a non-invasive fashion. This stimulated the development of a series of photo-deformable smart devices. However, it remained a challenge to reversibly modulate the stiffness and toughness of bulk materials. Here, we present bioengineered protein fibers and their optomechanical manipulation by employing electrostatic interactions between supercharged polypeptides (SUPs) and an azobenzene (Azo)-based surfactant. Photo-isomerization of the Azo moiety from the E- to Z-form reversibly triggered the modulation of tensile strength, stiffness, and toughness of the bulk protein fiber. Specifically, the photo-induced rearrangement into the Z-form of Azo possibly strengthened cation–π interactions within the fiber material, resulting in an around twofold increase in the fiber's mechanical performance. The outstanding mechanical and responsive properties open a path towards the development of SUP-Azo fibers as smart stimuli-responsive mechano-biomaterials. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Design of a core-shell catalyst : an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins

2020, Tan, Li, Wang, Fan, Zhang, Peipe, Suzuki, Yuichi, Wu, Yingquan, Chen, Jiangang, Yang, Guohui, Tsubaki, Noritatsu

An elegant catalyst is designedviathe encapsulation of metallic oxide Zn-Cr inside of zeolite SAPO34 as a core-shell structure (Zn-Cr@SAPO) to realize the coupling of methanol-synthesis and methanol-to-olefin reactions. It can not only break through the limitation of the Anderson-Schulz-Flory distribution but can also overcome the disadvantages of physical mixture catalysts, such as excessive CO2formation. The confinement effect, hierarchical structure and extremely short distance between the two active components result in the Zn-Cr@SAPO capsule catalyst having better mass transfer and diffusion with a boosted synergistic effect. Due to the difference between the adsorption energies of the Zn-Cr metallic oxide/SAPO zeolite physical mixture and capsule catalysts, the produced water and light olefins are easily removed from the Zn-Cr@SAPO capsule catalyst after formation, suppressing the side reactions. The light olefin space time yield (STY) of the capsule catalyst is more than twice that of the typical physical mixture catalyst. The designed capsule catalyst has superior potential for scale-up in industrial applications while simultaneously extending the capabilities of hybrid catalysts for other tandem catalysis reactions through this strategy. © The Royal Society of Chemistry 2020.

Loading...
Thumbnail Image
Item

Ultra-strong bio-glue from genetically engineered polypeptides

2021, Ma, Chao, Sun, Jing, Li, Bo, Feng, Yang, Sun, Yao, Xiang, Li, Wu, Baiheng, Xiao, Lingling, Liu, Baimei, Petrovskii, Vladislav S., Zhang, Jinrui, Wang, Zili, Li, Hongyan, Zhang, Lei, Li, Jingjing, Wang, Fan, Gӧstl, Robert, Potemkin, Igor I., Chen, Dong, Zeng, Hongbo, Zhang, Hongjie, Liu, Kai, Herrmann, Andreas

The development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.