Search Results

Now showing 1 - 6 of 6
  • Item
    Dynamics of serrated flow in a bulk metallic glass
    (New York : American Institute of Physics, 2011) Ren, J.L.; Chen, C.; Wang, G.; Mattern, N.; Eckert, J.
    Under compression loading, bulk metallic glasses (BMGs) irreversibly deform through shear banding manifested as a serrated flow behavior. By using a statistical analysis together with a complementary dynamical analysis of the stress-time curves during serrated flow, we characterize the distinct spatiotemporal dynamical regimes and find that the plastic dynamic behavior of a Cu50Zr45Ti5 BMG changes from chaotic to self-organized critical behavior with increasing strain rate. This plastic dynamics transition with the strain rate is interpreted in the frame of the competence between the neighboring elastic strain field forming and relaxation processes.
  • Item
    In-situ tensile testing of ZrCu-based metallic glass composites
    (London : Nature Publishing Group, 2018) Sun, H.C.; Ning, Z.L.; Wang, G.; Liang, W.Z.; Pauly, S.; Huang, Y.J.; Guo, S.; Xue, X.; Sun, J.F.
    ZrCu-based bulk metallic glass composites (BMGCs) are well known for their plastic deformability, superior to traditional metallic glasses (MGs), which is attributed to a unique dual-phases structure, namely, the glassy matrix and unstable B2 phase. In the present study, in-situ tensile testing is used to trace the deformation process of a ZrCu-based BMGC. Three deformation stages of the BMGC, i.e., the elastic-elastic stage, the elastic-plastic stage, and the plastic-plastic stage are identified. In the elastic-elastic and elastic-plastic stages, the yield strength and elastic limit are major influenced by the volume fraction of the B2 crystals. In the plastic-plastic stage, the B2 phase stimulates the formation of multiple shear bands and deflects the direction of shear bands by disturbing the stress field in front of the crack tip. The deformation-induced martensitic transformation of the metastable B2 phase contributes to the plasticity and work hardening of the composite. This study highlights the formation and propagation of multiple shear bands and reveals the interactions of shear bands with structural heterogeneities in situ. Especially, the blocking of shear bands by crystals and the martensitic transformation of the B2 phase are critical for the mechanistic deformation process and illustrate the function of the B2 phase in the present BMGCs.
  • Item
    Structural evolution and strength change of a metallic glass at different temperatures
    (London : Nature Publishing Group, 2016) Tong, X.; Wang, G.; Stachurski, Z.H.; Bednarčík, J.; Mattern, N.; Zhai, Q.J.; Eckert, J.
    The structural evolution of a Zr64.13Cu15.75Ni10.12Al10 metallic glass is investigated in-situ by high-energy synchrotron X-ray radiation upon heating up to crystallization. The structural rearrangements on the atomic scale during the heating process are analysed as a function of temperature, focusing on shift of the peaks of the structure factor in reciprocal space and the pair distribution function and radial distribution function in real space which are correlated with atomic rearrangements and progressing nanocrystallization. Thermal expansion and contraction of the coordination shells is measured and correlated with the bulk coefficient of thermal expansion. The characteristics of the microstructure and the yield strength of the metallic glass at high temperature are discussed aiming to elucidate the correlation between the atomic arrangement and the mechanical properties.
  • Item
    Glass-forming ability, phase formation and mechanical properties of glass-forming Cu-Hf-Zr alloys
    (Amsterdam : Elsevier B.V., 2019) Kosiba, K.; Song, K.; Kühn, U.; Wang, G.; Pauly, S.
    The influence of Hf additions on the glass-forming ability (GFA), phase formation and mechanical properties of Cu50HfxZr50-x (x = 2,5,10,20 at.%) alloys has been systematically investigated. We report on a distinct correlation between phase formation and GFA of Cu50Zr50-based alloys. Increasing additions of Hf reduce the thermal stability of the high-temperature B2 Cu(Hf,Zr) phase, while the thermal stability of the corresponding undercooled melt is enhanced. The GFA of these alloy series gradually raises up to 10 at.% Hf, whereas at 20 at.%Hf, the GFA is drastically lowered, since the B2 Cu(Hf,Zr) phase becomes unstable and the precipitation of the low-temperature equilibrium phases is favoured. This interrelation determines the microstructure and results in the formation of Cu-Hf-Zr-based bulk metallic glass composites. These composites not only show appreciable macroscopic plastic strain, but also high yield strength.
  • Item
    Phase formation of a biocompatible Ti-based alloy under kinetic constraints studied via in-situ high-energy X-ray diffraction
    (Amsterdam : Elsevier B.V., 2020) Kosiba, K.; Rothkirch, A.; Han, J.; Deng, L.; Escher, B.; Wang, G.; Kühn, U.; Bednarcik, J.
    The biocompatible Ti40Cu34Pd14Zr10Sn2 bulk metallic glass was rapidly heated, also known as flash-annealed, at varying heating rates up to 1579 K/s. Thereby, the phase formation was characterized via advanced in-situ high-energy X-ray diffraction. It has been found that the evolving kinetic constraints can be used as a tool to deliberately alter the crystalline phase formation. This novel processing route permits to select phases to crystallize to a predefined fraction and, thus, to potentially design the microstructure of materials according to a specified property-profile. Consequently, flash-annealing poses a unique synthesis route to design materials with, for instance, good biomechanical compatibility.
  • Item
    Correlation between atomic structure evolution and strength in a bulk metallic glass at cryogenic temperature
    (London : Nature Publishing Group, 2014) Tan, J.; Wang, G.; Liu, Z.Y.; Bednarčík, J.; Gao, Y.L.; Zhai, Q.J.; Mattern, N.; Eckert, J.
    A model Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) is selected to explore the structural evolution on the atomic scale with decreasing temperature down to cryogenic level using high energy X-ray synchrotron radiation. We discover a close correlation between the atomic structure evolution and the strength of the BMG and find out that the activation energy increment of the concordantly atomic shifting at lower temperature is the main factor influencing the strength. Our results might provide a fundamental understanding of the atomic-scale structure evolution and may bridge the gap between the atomic-scale physics and the macro-scale fracture strength for BMGs.