Search Results

Now showing 1 - 3 of 3
  • Item
    Self-Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors
    (Chichester : John Wiley and Sons Ltd, 2019) Li, F.; Wang, J.; Liu, L.; Qu, J.; Li, Y.; Bandari, V.K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T.; Baunack, S.; Zhu, M.; Zhu, F.; Schmidt, O.G.
    The rapid development of microelectronics has equally rapidly increased the demand for miniaturized energy storage devices. On-chip microsupercapacitors (MSCs), as promising power candidates, possess great potential to complement or replace electrolytic capacitors and microbatteries in various applications. However, the areal capacities and energy densities of the planar MSCs are commonly limited by the low voltage window, the thin layer of the electrode materials and complex fabrication processes. Here, a new-type three-dimensional (3D) tubular asymmetric MSC with small footprint area, high potential window, ultrahigh areal energy density, and long-term cycling stability is fabricated with shapeable materials and photolithographic technologies, which are compatible with modern microelectronic fabrication procedures widely used in industry. Benefiting from the novel architecture, the 3D asymmetric MSC displays an ultrahigh areal capacitance of 88.6 mF cm−2 and areal energy density of 28.69 mW h cm−2, superior to most reported interdigitated MSCs. Furthermore, the 3D tubular MSCs demonstrate remarkable cycling stability and the capacitance retention is up to 91.8% over 12 000 cycles. It is believed that the efficient fabrication methodology can be used to construct various integratable microscale tubular energy storage devices with small footprint area and high performance for miniaturized electronics.
  • Item
    Water nanostructure formation on oxide probed in situ by optical resonances
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Yin, Y.; Wang, J.; Wang, X.; Li, S.; Jorgensen, M.R.; Ren, J.; Meng, S.; Ma, L.; Schmidt, O.G.
    The dynamic characterization of water multilayers on oxide surfaces is hard to achieve by currently available techniques. Despite this, there is an increasing interest in the evolution of water nanostructures on oxides to fully understand the complex dynamics of ice nucleation and growth in natural and artificial environments. Here, we report the in situ detection of the dynamic evolution of nanoscale water layers on an amorphous oxide surface probed by optical resonances. In the water nanolayer growth process, we find an initial nanocluster morphology that turns into a planar layer beyond a critical thickness. In the reverse process, the planar water film converts to nanoclusters, accompanied by a transition from a planar amorphous layer to crystalline nanoclusters. Our results are explained by a simple thermodynamic model as well as kinetic considerations. Our work represents an approach to reveal the nanostructure and dynamics at the water-oxide interface using resonant light probing.
  • Item
    Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light
    (London : Nature Publishing Group, 2013) Yu, H.; Zhang, H.; Wang, Y.; Han, S.; Yang, H.; Xu, X.; Wang, Z.; Petrov, V.; Wang, J.
    We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.