Search Results

Now showing 1 - 2 of 2
  • Item
    SESAM mode-locked Tm:Y2O3 ceramic laser
    (Washington, DC : Soc., 2022) Zhang, Ning; Liu, Shande; Wang, Zhanxin; Liu, Jian; Xu, Xiaodong; Xu, Jun; Wang, Jun; Liu, Peng; Ma, Jie; Shen, Deyuan; Tang, Dingyuan; Lin, Hui; Zhang, Jian; Chen, Weidong; Zhao, Yongguang; Griebner, Uwe; Petrov, Valentin
    We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.
  • Item
    Sodium-ion diffusion coefficients in tin phosphide determined with advanced electrochemical techniques
    (Amsterdam [u.a.] : Elsevier Science, 2023) Wang, Jun; Pameté, Emmanuel; Yan, Shengli; Zhao, Wenhua; Zhang, Jianhui; He, Xiaotong; Supiyeva, Zhazira; Abbas, Qamar; Pan, Xuexue
    Sodium ion insertion plays a critical role in developing robust sodium-ion technologies (batteries and hybrid supercapacitors). Diffusion coefficient values of sodium (DNa+) in tin phosphide between 0.1 V and 2.0 V vs. Na/Na+ are systematically determined by galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). These values range between 4.55 × 10−12 cm2 s−1 and 1.94 × 10−8 cm2 s−1 and depend on the insertion/de-insertion current and the thickness of the electrode materials. Additionally, DNa+ values differ between the first and second cation insertion because of the solid electrolyte interface (SEI) formation. DNa+ vs. insertion potential alters non-linearly in a “W” form due to the strong interactions of Na+ with tin phosphide particles. The results reveal that GITT is a more appropriate electrochemical technique than PITT and EIS for evaluating DNa+ in tin phosphide.