Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

SESAM mode-locked Tm:Y2O3 ceramic laser

2022, Zhang, Ning, Liu, Shande, Wang, Zhanxin, Liu, Jian, Xu, Xiaodong, Xu, Jun, Wang, Jun, Liu, Peng, Ma, Jie, Shen, Deyuan, Tang, Dingyuan, Lin, Hui, Zhang, Jian, Chen, Weidong, Zhao, Yongguang, Griebner, Uwe, Petrov, Valentin

We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.

Loading...
Thumbnail Image
Item

Sodium-ion diffusion coefficients in tin phosphide determined with advanced electrochemical techniques

2023, Wang, Jun, Pameté, Emmanuel, Yan, Shengli, Zhao, Wenhua, Zhang, Jianhui, He, Xiaotong, Supiyeva, Zhazira, Abbas, Qamar, Pan, Xuexue

Sodium ion insertion plays a critical role in developing robust sodium-ion technologies (batteries and hybrid supercapacitors). Diffusion coefficient values of sodium (DNa+) in tin phosphide between 0.1 V and 2.0 V vs. Na/Na+ are systematically determined by galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). These values range between 4.55 × 10−12 cm2 s−1 and 1.94 × 10−8 cm2 s−1 and depend on the insertion/de-insertion current and the thickness of the electrode materials. Additionally, DNa+ values differ between the first and second cation insertion because of the solid electrolyte interface (SEI) formation. DNa+ vs. insertion potential alters non-linearly in a “W” form due to the strong interactions of Na+ with tin phosphide particles. The results reveal that GITT is a more appropriate electrochemical technique than PITT and EIS for evaluating DNa+ in tin phosphide.