Search Results

Now showing 1 - 2 of 2
  • Item
    Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents
    ([Bejing] : KeAi Publishing, 2021) Ma, Qing; Shi, Xiuying; Tan, Xing; Wang, Rui; Xiong, Kaiqin; Maitz, Manfred F.; Cui, Yuanyuan; Hu, Zhangmei; Tu, Qiufen; Huang, Nan; Shen, Li; Yang, Zhilu
    Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.g., Cu-DOTA coordination complex) and glycocalyx-like component (e.g., heparin) to create a durable endothelium-mimicking surface. The stent surface was firstly coated with polydopamine (pDA), followed by a surface chemical cross-link with polyamine (pAM) to form a durable pAMDA coating. Using a stepwise grafting strategy, Cu-DOTA and heparin were covalently grafted on the pAMDA-coated stent based on carbodiimide chemistry. Owing to both the high chemical stability of the pAMDA coating and covalent immobilization manner of the molecules, this proposed strategy could provide 62.4% bioactivity retention ratio of heparin, meanwhile persistently generate NO at physiological level from 5.9 ± 0.3 to 4.8 ± 0.4 × 10−10 mol cm−2 min−1 in 1 month. As a result, the functionalized vascular stent showed long-term endothelium-mimicking physiological effects on inhibition of thrombosis, inflammation, and intimal hyperplasia, enhanced re-endothelialization, and hence efficiently reduced ISR.
  • Item
    Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers
    (Basel : MDPI, 2018) Yang, Bo; Wang, Rui; Ma, Hui-Ling; Li, Xiaolu; Brünig, Harald; Dong, Zhenfeng; Qi, Yue; Zhang, Xiuqin
    Poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blend as-spun fibers (50/50, wt.%) were prepared by melt spinning. Structure mediation under temperature and stress and properties of poly(l-lactic acid)/poly(d-lactic acid)(PLLA/PDLA) as-spun fibers were investigated by wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The results show that highly oriented stereocomplex (SC) crystals can be formed in PLLA/PDLA blend fibers drawn at 60 °C and annealed at 200 °C. However, at drawn temperature of 80 °C, only lower oriented SC crystals can be formed. For PLLA/PDLA blend fibers drawn twice at 60 °C (PLLA/PDLA-60-2), the crystallinity of SC crystals increases with annealing temperature in the range of 200 to 215 °C, while the degree of orientation decreases slightly. When the annealing temperature is 210 °C, the crystallinity and orientation of SC crystals in PLLA/PDLA-60-2 fibers reach 51% and −0.39, respectively. Moreover, PLLA/PDLA-60-2-210 fibers exhibit excellent heat-resistant property even at 200 °C. The results indicate that the oriented PLLA/PDLA blend fibers with high SC crystals content can be regulated in a short time.