Search Results

Now showing 1 - 2 of 2
  • Item
    In-process evaluation of electrical properties of CIGS solar cells scribed with laser pulses of different pulse lengths
    (Amsterdam [u.a.] : Elsevier, 2014) Zimmer, K.; Wang, X.; Lorenz, P.; Bayer, L.; Ehrhardt, M.; Scheit, C.; Braun, A.
    The optimization of laser scribing for the interconnection of CIGS solar cells is a current focus of laser process development. In addition to the geometry of the laser scribes the impact of the laser patterning to the electrical properties of the solar cells has to be optimized with regards to the scribing process and the laser sources. In-process measurements provide an approach for reliable evaluation of the electrical characteristics. In particular, the parallel resistance Rp that was calculated from the measured I-V curves was measured in dependence on the scribing parameters of a short-pulsed ns laser in comparison to a standard ps laser at a wavelength of 1.06 μm. With low pulse overlap of ∼ 20% a reduction of Rp to 2/3 of the initial value has been achieved for ns laser pulses. In comparison to ps laser slightly more defects were observed at the investigated parameter range.
  • Item
    Water nanostructure formation on oxide probed in situ by optical resonances
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Yin, Y.; Wang, J.; Wang, X.; Li, S.; Jorgensen, M.R.; Ren, J.; Meng, S.; Ma, L.; Schmidt, O.G.
    The dynamic characterization of water multilayers on oxide surfaces is hard to achieve by currently available techniques. Despite this, there is an increasing interest in the evolution of water nanostructures on oxides to fully understand the complex dynamics of ice nucleation and growth in natural and artificial environments. Here, we report the in situ detection of the dynamic evolution of nanoscale water layers on an amorphous oxide surface probed by optical resonances. In the water nanolayer growth process, we find an initial nanocluster morphology that turns into a planar layer beyond a critical thickness. In the reverse process, the planar water film converts to nanoclusters, accompanied by a transition from a planar amorphous layer to crystalline nanoclusters. Our results are explained by a simple thermodynamic model as well as kinetic considerations. Our work represents an approach to reveal the nanostructure and dynamics at the water-oxide interface using resonant light probing.