Search Results

Now showing 1 - 6 of 6
  • Item
    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
    (München : European Geopyhsical Union, 2013) Pappalardo, G.; Mona, L.; D'Amico, G.; Wandinger, U.; Adam, M.; Amodeo, A.; Ansmann, A.; Apituley, A.; Alados Arboledas, L.; Balis, D.; Boselli, A.; Bravo-Aranda, J.A.; Chaikovsky, A.; Comeron, A.; Cuesta, J.; De Tomasi, F.; Freudenthaler, V.; Gausa, M.; Giannakaki, E.; Giehl, H.; Giunta, A.; Grigorov, I.; Groß, S.; Haeffelin, M.; Hiebsch, A.; Iarlori, M.; Lange, D.; Linné, H.; Madonna, F.; Mattis, I.; Mamouri, R.-E.; McAuliffe, M.A.P.; Mitev, V.; Molero, F.; Navas-Guzman, F.; Nicolae, D.; Papayannis, A.; Perrone, M.R.; Pietras, C.; Pietruczuk, A.; Pisani, G.; Preißler, J.; Pujadas, M.; Rizi, V.; Ruth, A.A.; Schmidt, J.; Schnell, F.; Seifert, P.; Serikov, I.; Sicard, M.; Simeonov, V.; Spinelli, N.; Stebel, K.; Tesche, M.; Trickl, T.; Wang, X.; Wagner, F.; Wiegner, M.; Wilson, K.M.
    The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.
  • Item
    Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles
    (München : European Geopyhsical Union, 2015) Wang, Z.; Su, H.; Wang, X.; Ma, N.; Wiedensohler, A.; Pöschl, U.; Cheng, Y.
    Knowledge about the chemical composition of aerosol particles is essential to understand their formation and evolution in the atmosphere. Due to analytical limitations, however, relatively little information is available for sub-10 nm particles. We present the design of a nano-cloud condensation nuclei counter (nano-CCNC) for measuring size-resolved hygroscopicity and inferring chemical composition of sub-10 nm aerosol particles. We extend the use of counting efficiency spectra from a water-based condensation particle counter (CPC) and link it to the analysis of CCN activation spectra, which provides a theoretical basis for the application of a scanning supersaturation CPC (SS-CPC) as a nano-CCNC. Measurement procedures and data analysis methods are demonstrated through laboratory experiments with monodisperse particles of diameter down to 2.5 nm, where sodium chloride, ammonium sulfate, sucrose and tungsten oxide can be easily discriminated by different characteristic supersaturations of water droplet formation. A near-linear relationship between hygroscopicity parameter κ and organic mass fraction is also found for sucrose-ammonium sulfate mixtures. The design is not limited to the water CPC, but also applies to CPCs with other working fluids (e.g. butanol, perfluorotributylamine). We suggest that a combination of SS-CPCs with multiple working fluids may provide further insight into the chemical composition of nanoparticles and the role of organic and inorganic compounds in the initial steps of atmospheric new particle formation and growth.
  • Item
    EARLINET: 12-year of aerosol profiling over Europe
    (Les Ulis : EDP Sciences, 2016) Mona, L.; Alados Arboledas, L.; Amiridis, V.; Amodeo, A.; Apituley, A.; Balis, D.; Comeron, A.; Iarlori, M.; Linné, H.; Nicolae, D.; Papayannis, A.; Perrone, M.R.; Rizi, V.; Siomos, N.; Wandinger, U.; Wang, X.; Pappalardo, G.
    EARLINET has been collecting high quality aerosol optical profiles over Europe since 2000. The comparison with automatic collected dataset of aerosol optical depth (AOD) from AERONET and MODIS demonstrates the effectiveness of EARLINET regular measurement schedule for climatological studies. The analysis of optical properties in the local boundary layer indicates that the general decrease of AOD observed by different platforms over Europe in the last decade could be due to the modification of aerosol properties (towards less absorbing and larger particles) in the lower troposphere.
  • Item
    Consistent negative response of US crops to high temperatures in observations and crop models
    (London : Nature Publishing Group, 2017) Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; Pugh, T.A.M.; Rolinski, S.; Schaphoff, S.; Schmid, E.; Wang, X.; Schlenker, W.; Frieler, K.
    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO 2 can only weakly reduce these yield losses, in contrast to irrigation.
  • Item
    MAgPIE 4-a modular open-source framework for modeling global land systems
    (Göttingen : Copernicus GmbH, 2019) Dietrich, J.P.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.; Stevanović, M.; Karstens, K.; Kreidenweis, U.; Wang, X.; Mishra, A.; Klein, D.; Ambrósio, G.; Araujo, E.; Yalew, A.W.; Baumstark, L.; Wirth, S.; Giannousakis, A.; Beier, F.; Meng-Chuen, Chen, D.; Lotze-Campen, H.; Popp, A.
    The open-source modeling framework MAgPIE (Model of Agricultural Production and its Impact on the Environment) combines economic and biophysical approaches to simulate spatially explicit global scenarios of land use within the 21st century and the respective interactions with the environment. Besides various other projects, it was used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. However, with growing scope and detail, the non-linear model has become increasingly complex, computationally intensive and non-transparent, requiring structured approaches to improve the development and evaluation of the model. Here, we provide an overview on version 4 of MAgPIE and how it addresses these issues of increasing complexity using new technical features: modular structure with exchangeable module implementations, flexible spatial resolution, in-code documentation, automatized code checking, model/output evaluation and open accessibility. Application examples provide insights into model evaluation, modular flexibility and region-specific analysis approaches. While this paper is focused on the general framework as such, the publication is accompanied by a detailed model documentation describing contents and equations, and by model evaluation documents giving insights into model performance for a broad range of variables. With the open-source release of the MAgPIE 4 framework, we hope to contribute to more transparent, reproducible and collaborative research in the field. Due to its modularity and spatial flexibility, it should provide a basis for a broad range of land-related research with economic or biophysical, global or regional focus.
  • Item
    Global patterns of crop yield stability under additional nutrient and water inputs
    (San Francisco, CA : Public Library of Science (PLoS), 2018) Müller, C.; Elliott, J.; Pugh, T.A.M.; Ruane, A.C.; Ciais, P.; Balkovic, J.; Deryng, D.; Folberth, C.; Cesar Izaurralde, R.; Jones, C.D.; Khabarov, N.; Lawrence, P.; Liu, W.; Reddy, A.D.; Schmid, E.; Wang, X.
    [No abstract available]