Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation

2021, Wen, Ping, Wang, Xueyi, Moreno, Silvia, Boye, Susanne, Voigt, Dagmar, Voit, Brigitte, Huang, Xin, Appelhans, Dietmar

The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.

Loading...
Thumbnail Image
Item

Renewable vanillin based flame retardant for poly(lactic acid): A way to enhance flame retardancy and toughness simultaneously

2018, Zhao, Pengcheng, Liu, Zhiqi, Wang, Xueyi, Pan, Ye-Tang, Kuehnert, Ines, Gehde, Michael, Wang, De-Yi, Leuteritz, Andreas

In this study, a novel bio-based flame retardant material consisting of modified vanillin and poly(lactic acid) (PLA) was developed by incorporation of newly discovered additive, bis(5-formyl-2-methoxyphenyl) phenylphosphonate (VP), into the PLA matrix. The chemical structure of VP was confirmed by 1 H-, 13 C- and 31 P NMR and FTIR. The flame retardancy, thermal behavior as well as the mechanical properties of PLA/VP composites were evaluated. With 5 wt% of VP, the LOI of PLA increased from 21.4 to 25.8 and passed the UL-94 V-0 classification. Additionally, the elongation at break was improved from 3% to 11% without sacrificing tensile strength. In an effort to understand the mechanisms, TGA-FTIR, TGA and SEM were performed. This paper suggests a new possibility to prepare polymeric composites with enhanced flame retardancy from sustainable resources.