Search Results

Now showing 1 - 2 of 2
  • Item
    Communicating sentiment and outlook reverses inaction against collective risks
    (Washington, DC : National Acad. of Sciences, 2020) Wang, Zhen; Jusup, Marko; Guo, Hao; Shi, Lei; Geček, Sunčana; Anand, Madhur; Perc, Matjaž; Bauch, Chris T.; Kurths, Jürgen; Boccaletti, Stefano; Schellnhuber, Hans Joachim
    Collective risks permeate society, triggering social dilemmas in which working toward a common goal is impeded by selfish interests. One such dilemma is mitigating runaway climate change. To study the social aspects of climate-change mitigation, we organized an experimental game and asked volunteer groups of three different sizes to invest toward a common mitigation goal. If investments reached a preset target, volunteers would avoid all consequences and convert their remaining capital into monetary payouts. In the opposite case, however, volunteers would lose all their capital with 50% probability. The dilemma was, therefore, whether to invest one's own capital or wait for others to step in. We find that communicating sentiment and outlook helps to resolve the dilemma by a fundamental shift in investment patterns. Groups in which communication is allowed invest persistently and hardly ever give up, even when their current investment deficits are substantial. The improved investment patterns are robust to group size, although larger groups are harder to coordinate, as evidenced by their overall lower success frequencies. A clustering algorithm reveals three behavioral types and shows that communication reduces the abundance of the free-riding type. Climate-change mitigation, however, is achieved mainly by cooperator and altruist types stepping up and increasing contributions as the failure looms. Meanwhile, contributions from free riders remain flat throughout the game. This reveals that the mechanisms behind avoiding collective risks depend on an interaction between behavioral type, communication, and timing.
  • Item
    Efficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Cousins, Benjamin; Le Borne, Sabine; Linke, Alexander; Rebholz, Leo G.; Wang, Zhen
    Recent research has shown that in some practically relevant situations like multi-physics flows [11] divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. In order to judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d; Pdisc k-1 )) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements like Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes, and discuss extensions. For iterative methods, we test augmented Lagrangian and H