Search Results

Now showing 1 - 2 of 2
  • Item
    A coaxial dielectric barrier discharge reactor for treatment of winter wheat seeds
    (Basel : MDPI, 2020) Nishime, Thalita M. C.; Wannicke, Nicola; Horn, Stefan; Weltmann, Klaus-Dieter; Brust, Henrike
    Non-thermal atmospheric pressure plasmas have been recently explored for their potential usage in agricultural applications as an interesting alternative solution for a potential increase in food production with a minor impact on the ecosystem. However, the adjustment and optimization of plasma sources for agricultural applications in general is an important study that is commonly overlooked. Thus, in the present work, a dielectric barrier discharge (DBD) reactor with coaxial geometry designed for the direct treatment of seeds is presented and investigated. To ensure reproducible and homogeneous treatment results, the reactor mechanically shakes the seeds during treatment, and ambient air is admixed while the discharge runs. The DBD, operating with argon and helium, produces two different chemically active states of the system for seed modification. The temperature evolution was monitored to guarantee a safe manipulation of seeds, whereas a physiological temperature was assured by controlling the exposure time. Both treatments led to a remarkable increase in wettability and acceleration in germination. The present study showed faster germination acceleration (60% faster after 24 h) and a lower water contact angle (WCA) (82% reduction) for winter wheat seeds by using the described argon discharge (with air impurities). Furthermore, the treatment can be easily optimized by adjusting the electrical parameters. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization and Optimization of a Conical Corona Reactor for Seed Treatment of Rapeseed
    (Basel : MDPI, 2022) Nishime, Thalita M. C.; Werner, Jasmin; Wannicke, Nicola; Mui, Taiana S. M.; Kostov, Konstantin G.; Weltmann, Klaus-Dieter; Brust, Henrike
    Plasma agriculture is a growing field that combines interdisciplinary areas with the aim of researching alternative solutions for increasing food production. In this field, plasma sources are used for the treatment of different agricultural goods in pre-and post-harvest. With the big variety of possible treatment targets, studied reactors must be carefully investigated and characterized for specific goals. Therefore, in the present study, a cone-shaped corona reactor working with argon was adapted for the treatment of small seeds, and its basic properties were investigated. The treatment of rapeseed using different voltage duty cycles led to an increase in surface wettability, possibly contributing to the accelerated germination (27% for 90% duty cycle). The discharge produced by the conical reactor was able to provide an environment abundant with reactive oxygen species that makes the process suitable for seeds treatment. However, operating in direct treatment configuration, large numbers of seeds placed in the reactor start impairing the discharge homogeneity.