Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

A coaxial dielectric barrier discharge reactor for treatment of winter wheat seeds

2020, Nishime, Thalita M. C., Wannicke, Nicola, Horn, Stefan, Weltmann, Klaus-Dieter, Brust, Henrike

Non-thermal atmospheric pressure plasmas have been recently explored for their potential usage in agricultural applications as an interesting alternative solution for a potential increase in food production with a minor impact on the ecosystem. However, the adjustment and optimization of plasma sources for agricultural applications in general is an important study that is commonly overlooked. Thus, in the present work, a dielectric barrier discharge (DBD) reactor with coaxial geometry designed for the direct treatment of seeds is presented and investigated. To ensure reproducible and homogeneous treatment results, the reactor mechanically shakes the seeds during treatment, and ambient air is admixed while the discharge runs. The DBD, operating with argon and helium, produces two different chemically active states of the system for seed modification. The temperature evolution was monitored to guarantee a safe manipulation of seeds, whereas a physiological temperature was assured by controlling the exposure time. Both treatments led to a remarkable increase in wettability and acceleration in germination. The present study showed faster germination acceleration (60% faster after 24 h) and a lower water contact angle (WCA) (82% reduction) for winter wheat seeds by using the described argon discharge (with air impurities). Furthermore, the treatment can be easily optimized by adjusting the electrical parameters. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Atmospheric CO2 availability induces varying responses in net photosynthesis, toxin production and N2 fixation rates in heterocystous filamentous Cyanobacteria (Nostoc and Nodularia)

2021, Wannicke, Nicola, Herrmann, Achim, Gehringer, Michelle M.

Heterocystous Cyanobacteria of the genus Nodularia form major blooms in brackish waters, while terrestrial Nostoc species occur worldwide, often associated in biological soil crusts. Both genera, by virtue of their ability to fix N2 and conduct oxygenic photosynthesis, contribute significantly to global primary productivity. Select Nostoc and Nodularia species produce the hepatotoxin nodularin and whether its production will change under climate change conditions needs to be assessed. In light of this, the effects of elevated atmospheric CO2 availability on growth, carbon and N2 fixation as well as nodularin production were investigated in toxin and non-toxin producing species of both genera. Results highlighted the following:Biomass and volume specific biological nitrogen fixation (BNF) rates were respectively almost six and 17 fold higher in the aquatic Nodularia species compared to the terrestrial Nostoc species tested, under elevated CO2 conditions.There was a direct correlation between elevated CO2 and decreased dry weight specific cellular nodularin content in a diazotrophically grown terrestrial Nostoc species, and the aquatic Nodularia species, regardless of nitrogen availability.Elevated atmospheric CO2 levels were correlated to a reduction in biomass specific BNF rates in non-toxic Nodularia species.Nodularin producers exhibited stronger stimulation of net photosynthesis rates (NP) and growth (more positive Cohen’s d) and less stimulation of dark respiration and BNF per volume compared to non-nodularin producers under elevated CO2 levels. This study is the first to provide information on NP and nodularin production under elevated atmospheric CO2 levels for Nodularia and Nostoc species under nitrogen replete and diazotrophic conditions.

Loading...
Thumbnail Image
Item

Concentrations and Uptake of Dissolved Organic Phosphorus Compounds in the Baltic Sea

2018-12-10, Nausch, Monika, Achterberg, Eric P., Bach, Lennart T., Brussaard, Corinna P. D., Crawfurd, Katharine J., Fabian, Jenny, Riebesell, Ulf, Stuhr, Annegret, Unger, Juliane, Wannicke, Nicola

The dissolved organic phosphorus (DOP) pool in marine waters contains a variety of different compounds. Knowledge of the distribution and utilization of DOP by phyto- and bacterioplankton is limited, but critical to our understanding of the marine phosphorus cycle. In the Baltic Sea, detailed information about the composition of DOP and its turnover is lacking. This study reports the concentrations and uptake rates of DOP compounds, namely, adenosine triphosphate (dATP), deoxyribonucleic acid (dDNA), and phospholipids (dPL), in the Baltic Proper and in Finnish coastal waters in the summers of 2011 and 2012. Both areas differed in their dissolved inorganic phosphorus (DIP) concentrations (0.16 and 0.02–0.04 μM), in the C:P (123–178) and N:P (18–27) ratios, and in abundances of filamentous cyanobacteria and of autotrophic and heterotrophic picoplankton. The mean concentrations of dATP-P, dDNA-P, and dPL-P were 4.3–6.4, 0.05–0.12, and 1.9–6.8 nM, respectively, together contributing between 2.4 and 5.2% of the total DOP concentration. The concentrations of the compounds varied between and within the investigated regions and the distribution patterns of the individual components are not linked to each other. DIP was taken up at rates of 10.1–380.8 nM d-1. dATP-P and dDNA-P were consumed simultaneously with DIP at rates of 6.9–24.1 and 0.09–0.19 nM d-1, respectively, with the main proportion taken up by the size fraction <3 μm and with DIP to be the dominant source. Groups of hydrographical and biological parameters were identified in the multiple regression analysis to impact the concentrations and uptake rates. It points to the complexity of the regulation. Our results indicate that the investigated DOP compounds, particularly dATP-P, can make significant contributions to the P nutrition of microorganisms and their use seems to be not intertwined. Therefore, more detailed knowledge of all DOP components including variation of concentrations and the utilization is required to understand the roles of DOP in marine ecosystems.

Loading...
Thumbnail Image
Item

Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination

2021, Wannicke, Nicola, Wagner, Robert, Stachowiak, Joerg, Nishime, Thalita M.C., Ehlbeck, Joerg, Weltmann, Klaus‐Dieter, Brust, Henrike

In this study, the antimicrobial effect of plasma-processed air (PPA) generated by a microwave-induced nonthermal plasma was investigated for preharvest utilization using three crop species: Barley, rape, and lupine. Bacillus atrophaeus spores were chosen as a model, inoculated onto seeds, and subsequently treated with PPA at two different flow rates, different filling regimes, and gas exposure times. PPA treatment was efficient in reducing viable spores of B. atrophaeus, reaching sporicidal effects in all species at certain parameter combinations. Maximum germination of seeds was strongly reduced in barley and rape seeds at some parameter combination, whereas it had a modest effect on lupine seeds. Seed hydrophilicity was not altered. Overall, PPA investigated in this study proved suitable for preharvest applications.

Loading...
Thumbnail Image
Item

New Perspectives on Nitrogen Fixation Measurements Using 15N2 Gas

2018-04-06, Wannicke, Nicola, Benavides, Mar, Dalsgaard, Tage, Dippner, Joachim W., Montoya, Joseph P., Voss, Maren

Recently, the method widely used to determine 15N2 fixation rates in marine and freshwater environments was found to underestimate rates because the dissolution of the added 15N2 gas bubble in seawater takes longer than theoretically calculated. As a solution to the potential underestimate of rate measurements, the usage of the enriched water method was proposed to provide constant 15N2 enrichment. Still, the superiority of enriched water method over the previously used bubble injection remains inconclusive. To clarify this issue, we performed laboratory based experiments and implemented the results into an error analysis of 15N2 fixation rates. Moreover, we conducted a literature search on the comparison of the two methods to calculate a mean effect size using a meta-analysis approach. Our results indicate that the error potentially introduced by an equilibrium phase of the 15N2 gas is −72% at maximum for experiments with very short incubation times of 1 h. In contrast, the underestimation was negligible for incubations lasting 12–24 h (error is −0.2%). Our meta-analysis indicates that 84% of the measurements in the two groups will overlap and there is a 61% chance that a sample picked at random from the enriched water group will have a higher value than one picked at random from the bubble group. Overall, the underestimation of N2 fixation rates when using the bubble method relative to the enriched water method is highly dependent on incubation time and other experimental conditions and cannot be generalized.

Loading...
Thumbnail Image
Item

Characterization and Optimization of a Conical Corona Reactor for Seed Treatment of Rapeseed

2022, Nishime, Thalita M. C., Werner, Jasmin, Wannicke, Nicola, Mui, Taiana S. M., Kostov, Konstantin G., Weltmann, Klaus-Dieter, Brust, Henrike

Plasma agriculture is a growing field that combines interdisciplinary areas with the aim of researching alternative solutions for increasing food production. In this field, plasma sources are used for the treatment of different agricultural goods in pre-and post-harvest. With the big variety of possible treatment targets, studied reactors must be carefully investigated and characterized for specific goals. Therefore, in the present study, a cone-shaped corona reactor working with argon was adapted for the treatment of small seeds, and its basic properties were investigated. The treatment of rapeseed using different voltage duty cycles led to an increase in surface wettability, possibly contributing to the accelerated germination (27% for 90% duty cycle). The discharge produced by the conical reactor was able to provide an environment abundant with reactive oxygen species that makes the process suitable for seeds treatment. However, operating in direct treatment configuration, large numbers of seeds placed in the reactor start impairing the discharge homogeneity.

Loading...
Thumbnail Image
Item

Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries

2020, Voss, Maren, Asmala, Eero, Bartl, Ines, Carstensen, Jacob, Conley, Daniel J., Dippner, Joachim W., Humborg, Christoph, Lukkari, Kaarina, Petkuviene, Jolita, Reader, Heather, Stedmon, Colin, Vybernaite-Lubiene, Irma, Wannicke, Nicola, Zilius, Mindaugas

Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most. © 2020, The Author(s).