Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines

2018, Li, Jiawen, Ebendorff-Heidepriem, Heike, Gibson, Brant C., Greentree, Andrew D., Hutchinson, Mark R., Jia, Peipei, Kostecki, Roman, Liu, Guozhen, Orth, Antony, Ploschner, Martin, Schartner, Erik P., Warren-Smith, Stephen C., Zhang, Kaixin, Tsiminis, Georgios, Goldys, Ewa

The probing of physiological processes in living organisms is a grand challenge that requires bespoke analytical tools. Optical fiber probes offer a minimally invasive approach to report physiological signals from specific locations inside the body. This perspective article discusses a wide range of such fiber probes developed at the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics. Our fiber platforms use a range of sensing modalities, including embedded nanodiamonds for magnetometry, interferometric fiber cavities for refractive index sensing, and tailored metal coatings for surface plasmon resonance sensing. Other fiber probes exploit molecularly sensitive Raman scattering or fluorescence where optical fibers have been combined with chemical and immunosensors. Fiber imaging probes based on interferometry and computational imaging are also discussed as emerging in vivo diagnostic devices. We provide examples to illustrate how the convergence of multiple scientific disciplines generates opportunities for the fiber probes to address key challenges in real-time in vivo diagnostics. These future fiber probes will enable the asking and answering of scientific questions that were never possible before.

Loading...
Thumbnail Image
Item

On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core light cage

2022, Kim, Jisoo, Jang, Bumjoon, Wieduwilt, Torsten, Warren-Smith, Stephen C., Bürger, Johannes, Maier, Stefan A., Schmidt, Markus A.

The on-chip detection of fluorescent light is essential for many bioanalytical and life-science related applications. Here, the optofluidic light cage consisting of a sparse array of micrometer encircling a hollow core represents an innovative concept, particularly for on-chip waveguide-based spectroscopy. In the present work, we demonstrate the potential of the optofluidic light cage concept in the context of integrated on-chip fluorescence spectroscopy. Specifically, we show that fluorescent light from a dye-doped aqueous solution generated in the core of a nanoprinted dual-ring light cage can be efficiently captured and guided to the waveguide ports. Notably, the fluorescence collection occurs predominantly in the fundamental mode, a property that distinguishes it from evanescent field-based waveguide detection schemes that favor collection in higher-order modes. Through exploiting the flexibility of waveguide design and 3D nanoprinting, both excitation and emission have been localized in the high transmission domains of the fundamental core mode. Fast diffusion, detection limits comparable to bulk measurements, and the potential of this approach in terms of device integration were demonstrated. Together with previous results on absorption spectroscopy, the achievements presented here suggest that the optofluidic light cage concept defines a novel photonic platform for integrated on-chip spectroscopic devices and real-time sensors compatible with both the fiber circuitry and microfluidics. Applications in areas such as bioanalytics and environmental sciences are conceivable, while more sophisticated applications such as nanoparticle tracking analysis and integrated Raman spectroscopy could be envisioned,