Search Results

Now showing 1 - 2 of 2
  • Item
    Recombinant perlucin derivatives influence the nucleation of calcium carbonate
    (London : RSC, 2016) Weber, Eva; Weiss, Ingrid M.; Cölfen, Helmut; Kellermeier, Matthias
    Proteins are known to play various key roles in the formation of complex inorganic solids during natural biomineralisation processes. However, in most cases our understanding of the actual underlying mechanisms is rather limited. One interesting example is perlucin, a protein involved in the formation of nacre, where it is believed to promote the crystallisation of calcium carbonate. In the present work, we have used potentiometric titration assays to systematically investigate the influence of recombinant GFP-labeled perlucin derivatives on the early stages of CaCO3 formation. Our results indicate that different parts of the protein can impact nucleation in distinct ways and act in either a retarding or promoting fashion. The most important finding is that full-length GFP-perlucin changes the nature of the initially precipitated phase and seems to favour the direct formation of crystalline polymorphs over nucleation of ACC and subsequent phase transformation, as observed in reference experiments without protein. This confirms the supposed role of perlucin in nacre biomineralisation and may rely on specific interactions between the protein and the crystal lattice of the emerging mineral phase.
  • Item
    Silica nanoparticles for intracellular protein delivery: A novel synthesis approach using green fluorescent protein
    (London : BioMed Central, 2017) Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette
    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.