Search Results

Now showing 1 - 2 of 2
  • Item
    CAMP: An instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
    (Katlenburg-Lindau : Copernicus, 2022) Pilz, Christian; Düsing, Sebastian; Wehner, Birgit; Müller, Thomas; Siebert, Holger; Voigtländer, Jens; Lonardi, Michael
    Airborne observations of vertical aerosol particle distributions are crucial for detailed process studies and model improvements. Tethered balloon systems represent a less expensive alternative to aircraft to probe shallow atmospheric boundary layers (ABLs). This study presents the newly developed cubic aerosol measurement platform (CAMP) for balloon-borne observations of aerosol particle microphysical properties. With an edge length of 35 cm and a weight of 9 kg, the cube is an environmentally robust instrument platform intended for measurements at low temperatures, with a particular focus on applications in cloudy Arctic ABLs. The aerosol instrumentation on board CAMP comprises two condensation particle counters with different lower detection limits, one optical particle size spectrometer, and a miniaturized absorption photometer. Comprehensive calibrations and characterizations of the instruments were performed in laboratory experiments. The first field study with a tethered balloon system took place at the Leibniz Institute for Tropospheric Research (TROPOS) station in Melpitz, Germany, in the winter of 2019. At ambient temperatures between-8 and 15 C, the platform was operated up to a 1.5 km height on 14 flights under both clear-sky and cloudy conditions. The continuous aerosol observations at the ground station served as a reference for evaluating the CAMP measurements. Exemplary profiles are discussed to elucidate the performance of the system and possible process studies. Based on the laboratory instrument characterizations and the observations during the field campaign, CAMP demonstrated the capability to provide comprehensive aerosol particle measurements in cold and cloudy ABLs.
  • Item
    Arctic haze over Central Europe
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Tuch, Thomas; Wehner, Birgit; Wiedensohler, Alfred; Wex, Heike; Ansmann, Albert; Mattis, Ina; Müller, Detlef; Wendisch, Manfred; Eckhardt, Sabine; Stohl, Andreas
    An extraordinary aerosol situation over Leipzig, Germany in April 2002 was investigated with a comprehensive set of ground-based volumetric and columnar aerosol data, combined with aerosol profiles from lidar, meteorological data from radiosondes and air mass trajectory calculations. Air masses were identified to stem from the Arctic, partly influenced by the greater Moscow region. An evaluation of ground-based measurements of aerosol size distributions during these periods showed that the number concentrations below about 70 nm in diameter were below respective long-term average data, while number, surface and volume concentrations of the particles larger than about 70 nm in diameter were higher than the long-term averages. The lidar aerosol profiles showed that the imported aerosol particles were present up to about 3 km altitude. The particle optical depth was up to 0.45 at 550 nm wavelength. With a one-dimensional spectral radiative transfer model top of the atmosphere (TOA) radiative forcing of the aerosol layer was estimated for a period with detailed vertical information. Solar aerosol radiative forcing values between −23 and −38 W m−2 were calculated, which are comparable to values that have been reported in heavily polluted continental plumes outside the respective source regions. The present report adds weight to previous findings of aerosol import to Europe, pointing to the need for attributing the three-dimensional aerosol burden to natural and anthropogenic sources as well as to aerosol imports from adjacent or distant source regions. In the present case, the transport situation is further complicated by forward trajectories, indicating that some of the observed Arctic haze may have originated in Central Europe. This aerosolwas transported to the European Arctic before being re-imported in the modified and augmented form to its initial source region.