Search Results

Now showing 1 - 4 of 4
  • Item
    First results of the "Carbonaceous Aerosol in Rome and Environs (CARE)" Experiment: Beyond current standards for PM10
    (Basel, Switzerland : MDPI AG, 2017) Costabile, Francesca; Alas, Honey; Aufderheide, Michaela; Avino, Pasquale; Amato, Fulvio; Argentini, Stefania; Barnaba, Francesca; Berico, Massimo; Bernardoni, Vera; Biondi, Riccardo; Casasanta, Giampietro; Ciampichetti, Spartaco; Calzolai, Giulia; Canepari, Silvia; Conidi, Alessandro; Cordelli, Eugenia; Di Ianni, Antonio; Di Liberto, Luca; Facchini, Maria Cristina; Facci, Andrea; Frasca, Daniele; Gilardoni, Stefania; Grollino, Maria Giuseppa; Gualtieri, Maurizio; Lucarelli, Franco; Malaguti, Antonella; Manigrasso, Maurizio; Montagnoli, Mauro; Nava, Silvia; Perrino, Cinzia; Padoan, Elio; Petenko, Igor; Querol, Xavier; Simonetti, Giulia; Tranfo, Giovanna; Ubertini, Stefano; Valli, Gianluigi; Valentini, Sara; Vecchi, Roberta; Volpi, Francesca; Weinhold, Kay; Wiedensohler, Alfred; Zanini, Gabriele; Gobbi, Gian Paolo; Petralia, Ettore
    In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE)” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM) pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i) measurements with high time resolution (min to 1–2 h) at a fixed location of black carbon (eBC), elemental carbon (EC), organic carbon (OC), particle number size distribution (0.008–10 μm), major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii) 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC), and levoglucosan; (iii) mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv) characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i) preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles); (ii) assessment of the oxidative stress induced by carbonaceous aerosols; (iii) assessment of particle size dependent number doses deposited in different regions of the human body; (iv) PAHs biomonitoring (from the participants into the mobile measurements). The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address future research directions. First, we found that BC and EC mass concentration in Rome are larger than those measured in similar urban areas across Europe (the urban background mass concentration of eBC in Rome in winter being on average 2.6 ± 2.5 μg · m−3, mean eBC at the peak level hour being 5.2 (95% CI = 5.0–5.5) μg · m−3 ). Then, we discussed significant variations of carbonaceous aerosol properties occurring with time scales of minutes, and questioned on the data averaging period used in current air quality standard for PM10 (24-h). Third, we showed that the oxidative potential induced by aerosol depends on particle size and composition, the effects of toxicity being higher with lower mass concentrations and smaller particle size. Albeit this is a preliminary analysis, findings reinforce the need for an urgent update of existing air quality standards for PM10 and PM2.5 with regard to particle composition and size distribution, and data averaging period. Our results reinforce existing concerns about the toxicity of carbonaceous aerosols, support the existing evidence indicating that particle size distribution and composition may play a role in the generation of this toxicity, and remark the need to consider a shorter averaging period (<1 h) in these new standards.
  • Item
    Black carbon aerosol in Rome (Italy): Inference of a long-term (2001-2017) record and related trends from AERONET sun-photometry data
    (Basel, Switzerland : MDPI AG, 2018) Di Ianni, Antonio; Costabile, Francesca; Barnaba, Francesca; Di Liberto, Luca; Weinhold, Kay; Wiedensohler, Alfred; Struckmeier, Caroline; Drewnick, Frank; Gobbi, Gian Paolo
    Surface concentration of black carbon (BC) is a key factor for the understanding of the impact of anthropogenic pollutants on human health. The majority of Italian cities lack long-term measurements of BC concentrations since such a metric is not regulated by EU legislation. This work attempts a long-term (2001–2017) inference of equivalent black carbon (eBC) concentrations in the city of Rome (Italy) based on sun-photometry data. To this end, aerosol light absorption coefficients at the surface are inferred from the ”columnar” aerosol aerosol light absorption coefficient records from the Rome Tor Vergata AERONET sun-photometer. The main focus of this work is to rescale aerosol light absorption columnar data (AERONET) to ground-level BC data. This is done by using values of mixing layer height (MLH) derived from ceilometer measurements and then by converting the absorption into eBC mass concentration through a mass–to–absorption conversion factor, the Mass Absorption Efficiency (MAE). The final aim is to obtain relevant data representative of the BC aerosol at the surface (i.e., in-situ)–so within the MLH– and then to infer a long-term record of “surface” equivalent black carbon mass concentration in Rome. To evaluate the accuracy of this procedure, we compared the AERONET-based results to in-situ measurements of aerosol light absorption coefficients (αabs) collected during some intensive field campaigns performed in Rome between 2010 and 2017. This analysis shows that different measurement methods, local emissions, and atmospheric conditions (MLH, residual layers) are some of the most important factors influencing differences between inferred and measured αabs. As a general result, ”inferred” and ”measured” αabs resulted to reach quite a good correlation (up to r = 0.73) after a screening procedure that excludes one of the major cause of discrepancy between AERONET inferred and in-situ measured αabs: the presence of highly absorbing aerosol layers at high altitude (e.g., dust), which frequently affects the Mediterranean site of Rome. Long-term trends of “inferred” αabs, eBC, and of the major optical variables that control aerosol’s direct radiative forcing (extinction aerosol optical depth, AODEXT, absorption aerosol optical depth, AODABS, and single scattering albedo, SSA) have been estimated. The Mann-Kendall statistical test associated with Sen’s slope was used to test the data for long-term trends. These show a negative trend for both AODEXT (−0.047/decade) and AODABS (−0.007/decade). The latter converts into a negative trend for the αabs of −5.9 Mm−1/decade and for eBC mass concentration of −0.76 μg/m3/decade. A positive trend is found for SSA (+0.014/decade), indicating that contribution of absorption to extinction is decreasing faster than that of scattering. These long-term trends are consistent with those of other air pollutant concentrations (i.e., PM2.5 and CO) in the Rome area. Despite some limitations, findings of this study fill a current lack in BC observations and may bear useful implications with regard to the improvement of our understanding of the impact of BC on air quality and climate in this Mediterranean urban region.
  • Item
    Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe
    (Berlin ; Heidelberg : Springer, 2021) Sun, Jia; Hermann, Markus; Yuan, Ye; Birmili, Wolfram; Collaud Coen, Martine; Weinhold, Kay; Madueño, Leizel; Poulain, Laurent; Tuch, Thomas; Ries, Ludwig; Sohmer, Ralf; Couret, Cedric; Frank, Gabriele; Brem, Benjamin Tobias; Gysel-Beer, Martin; Ma, Nan; Wiedensohler, Alfred
    Background: The implementation of emission mitigation policies in Europe over the last two decades has generally improved the air quality, which resulted in lower aerosol particle mass, particle number, and black carbon mass concentration. However, little is known whether the decreasing particle concentrations at a lower-altitude level can be observed in the free troposphere (FT), an important layer of the atmosphere, where aerosol particles have a longer lifetime and may affect climate dynamics. In this study, we used data from two high-Alpine observatories, Zugspitze-Schneefernerhaus (ZSF) and Jungfraujoch (JFJ), to assess the long-term trends on size-resolved particle number concentrations (PNCs) and equivalent black carbon (eBC) mass concentration separated for undisturbed lower FT conditions and under the influence of air from the planetary boundary layer (PBL) from 2009 to 2018. Results: The FT and PBL-influenced conditions were segregated for both sites. We found that the FT conditions in cold months were more prevalent than in warm months, while the measured aerosol parameters showed different seasonal patterns for the FT and PBL-influenced conditions. The pollutants in the PBL-influenced condition have a higher chance to be transported to high-altitudes due to the mountainous topography, leading to a higher concentration and more distinct seasonal variation, and vice versa. The long-term trends of the measured aerosol parameters were evaluated and the decreased aerosol concentrations were observed for both FT and PBL-influenced conditions. The observed decreasing trends in eBC concentration in the PBL-influenced condition are well consistent with the reported trends in total BC emission in Germany and Switzerland. The decreased concentrations in the FT condition suggest that the background aerosol concentration in the lower FT over Central Europe has correspondingly decreased. The change of back trajectories in the FT condition at ZSF and JFJ was further evaluated to investigate the other possible drivers for the decreasing trends. Conclusions: The background aerosol concentration in the lower FT over Central Europe has significantly decreased during 2009–2018. The implementation of emission mitigation policies is the most decisive factor and the decrease of the regional airmass occurrence over Central Europe also has contributed to the decreasing trends. © 2021, The Author(s).
  • Item
    Real World Vehicle Emission Factors for Black Carbon Derived from Longterm In-Situ Measurements and Inverse Modelling
    (Basel : MDPI, 2021) Wiesner, Anne; Pfeifer, Sascha; Merkel, Maik; Tuch, Thomas; Weinhold, Kay; Wiedensohler, Alfred
    Black carbon (BC) is one of the most harmful substances within traffic emissions, contributing considerably to urban pollution. Nevertheless, it is not explicitly regulated and the official laboratory derived emission factors are barely consistent with real world emissions. However, realistic emission factors (EFs) are crucial for emission, exposure, and climate modelling. A unique dataset of 10 years (2009–2018) of roadside and background measurements of equivalent black carbon (eBC) concentration made it possible to estimate real world traffic EFs and observe their change over time. The pollutant dispersion was modelled using the Operational Street Pollution Model (OSPM). The EFs for eBC are derived for this specific measurement site in a narrow but densely trafficked street canyon in Leipzig, Germany. The local conditions and fleet composition can be considered as typical for an inner-city traffic scenario in a Western European city. The fleet is composed of 22% diesel and 77% petrol cars in the passenger car segment, with an unknown proportion of direct injection engines. For the mixed fleet the eBC EF was found to be 48 mg km−1 in the long-term average. Accelerated by the introduction of a low emission zone, the EFs decreased over the available time period from around 70 mg km−1 to 30 – 40 mg km−1 . Segregation into light (<3.5 t) and heavy (>3.5 t) vehicles resulted in slightly lower estimates for the light vehicles than for the mixed fleet, and one order of magnitude higher values for the heavy vehicles. The found values are considerably higher than comparable emission standards for particulate matter and even the calculations of the Handbook Emission Factors for Road Transport (HBEFA), which is often used as emission model input. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.