Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Impact of AlN Templates on Strain Relaxation Mechanisms during the MOVPE Growth of UVB-LED Structures

2020, Knauer, Arne, Mogilatenko, Anna, Weinrich, Jonas, Hagedorn, Sylvia, Walde, Sebastian, Kolbe, Tim, Cancellara, Leonardo, Weyers, Markus

Strain relaxation mechanisms in AlGaN based light emitting diodes emitting in the ultraviolet B spectral range (UVB-LEDs) grown on different AlN/sapphire templates are analyzed by combining in situ reflectivity and curvature data with transmission electron microscopy. In particular, the impact of dislocation density, surface morphology, and lattice constant of the AlN/sapphire templates is studied. For nonannealed AlN/templates with threading dislocation densities (TDDs) of 4 × 109 and 3 × 109 cm−2 and different surface morphologies strain relaxation takes place mostly by conventional ways, such as inclination of threading dislocation lines and formation of horizontal dislocation bands. In contrast, a TDD reduction down to 1 × 109 cm−2 as well as a reduction of the lattice constant of high temperature annealed AlN template leads to drastic changes in the structure of subsequently grown AlGaN layers, e.g., to transformation to helical dislocations and enhanced surface enlargement by formation of macrofacets. For the growth of strongly compressively strained AlGaN layers for UVB-LEDs the relaxation mechanism is strongly influenced by the absolute values of TDD and the lattice constant of the AlN templates and is less influenced by their surface morphology.

Loading...
Thumbnail Image
Item

High‐Temperature Annealing and Patterned AlN/Sapphire Interfaces

2021, Hagedorn, Sylvia, Mogilatenko, Anna, Walde, Sebastian, Pacak, Daniel, Weinrich, Jonas, Hartmann, Carsten, Weyers, Markus

Using the example of epitaxial lateral overgrowth of AlN on trench-patterned AlN/sapphire templates, the impact of introducing a high-temperature annealing step into the process chain is investigated. Covering the open surfaces of sapphire trench sidewalls with a thin layer of AlN is found to be necessary to preserve the trench shape during annealing. Both the influence of annealing temperature and annealing duration are investigated. To avoid the deformation of the AlN/sapphire interface during annealing, the annealing duration or annealing temperature must be low enough. Annealing for 1 h at 1730 °C is found to allow for the lowest threading dislocation density of 3.5 × 108 cm−2 in the subsequently grown AlN, while maintaining an uncracked smooth surface over the entire 2 in. wafer. Transmission electron microscopy study confirms the defect reduction by high-temperature annealing and reveals an additional strain relaxation mechanism by accumulation of horizontal dislocation lines at the interface between annealed and nonannealed AlN. By applying a second annealing step, the dislocation density can be further reduced to 2.5 × 108 cm−2.