Search Results

Now showing 1 - 10 of 10
  • Item
    Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface
    (Bristol : Institute of Physics Publishing, 2014) Wild, R.; Gerling, T.; Bussiahn, R.; Weltmann, K.-D.; Stollenwerk, L.
    The surface charge distribution deposited by the effluent of a dielectric barrier discharge driven atmospheric pressure plasma jet on a dielectric surface has been studied. For the first time, the deposition of charge was observed phase resolved. It takes place in either one or two events in each half cycle of the driving voltage. The charge transfer could also be detected in the electrode current of the jet. The periodic change of surface charge polarity has been found to correspond well with the appearance of ionized channels left behind by guided streamers (bullets) that have been identified in similar experimental situations. The distribution of negative surface charge turned out to be significantly broader than for positive charge. With increasing distance of the jet nozzle from the target surface, the charge transfer decreases until finally the effluent loses contact and the charge transfer stops.
  • Item
    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure
    ([London] : IOP, 2015) Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure ${{{\rm N}}_{2}}$, ${{{\rm O}}_{2}}$ and ${{{\rm N}}_{2}}$ + ${{{\rm O}}_{2}}$. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (${{{\rm O}}_{3}}$) and nitrogen dioxide (${\rm N}{{{\rm O}}_{2}}$) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the ${{{\rm O}}_{3}}$ and the ${\rm N}{{{\rm O}}_{2}}$ generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.
  • Item
    Nitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrate
    (Bristol : IOP, 2014) Iseni, S.; Zhang, S.; Van Gessel, A.F.H.; Hofmann, S.; Van Ham, B.T.J.; Reuter, S.; Weltmann, K.-D.; Bruggeman, P.J.
    The effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.
  • Item
    Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms
    (San Francisco, CA : Public Library of Science, 2012) Fricke, K.; Koban, I.; Tresp, H.; Jablonowski, L.; Schröder, K.; Kramer, A.; Weltmann, K.-D.; von Woedtke, T.; Kocher, T.
    Introduction: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. Method: In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. Results: The Candida albicans biofilm, with a thickness of 10 to 20 μm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.
  • Item
    Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms
    (San Francisco, CA : Public Library of Science, 2013) Matthes, R.; Bender, C.; Schlüter, R.; Koban, I.; Bussiahn, R.; Reuter, S.; Lademann, J.; Weltmann, K.-D.; Kramer, A.
    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.
  • Item
    Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet
    (College Park, MD : Institute of Physics Publishing, 2010) Koban, I.; Matthes, R.; Hübner, N.-O.; Welk, A.; Meisel, P.; Holtfreter, B.; Sietmann, R.; Kindel, E.; Weltmann, K.-D.; Kramer, A.; Kocher, T.
    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% Chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet
    (Bristol : IOP Publ., 2015) Dünnbier, M.; Becker, M.M.; Iseni, S.; Bansemer, R.; Loffhagen, D.; Reuter, S.; Weltmann, K.-D.
    A megahertz-driven plasma jet at atmospheric pressure—the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ)—operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α–γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f  3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f  3/2 scaling of the α–γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α–γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon.
  • Item
    Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids
    ([S.l.] : American Institute of Physics, 2015) Jablonowski, H.; Bussiahn, R.; Hammer, M.U.; Weltmann, K.-D.; von Woedtke, T.; Reuter, S.
    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•−) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.
  • Item
    Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties
    (Hindawi Publishing Corporation, 2014) Schnabelrauch, M.; Wyrwa, R.; Rebl, H.; Bergemann, C.; Finke, B.; Schlosser, M.; Walschus, U.; Lucke, S.; Weltmann, K.-D.; Nebe, J.B.
    Poly(L-lactide-co-D/L-lactide)-based fiber meshes resembling structural features of the native extracellular matrix have been prepared by electrospinning. Subsequent coating of the electrospun fibers with an ultrathin plasma-polymerized allylamine (PPAAm) layer after appropriate preactivation with continuous O2/Ar plasma changed the hydrophobic nature of the polylactide surface into a hydrophilic polymer network and provided positively charged amino groups on the fiber surface able to interact with negatively charged pericellular matrix components. In vitro cell experiments using different human cell types (epithelial origin: gingiva and uroepithelium; bone cells: osteoblasts) revealed that the PPAAm-activated surfaces promoted the occupancy of the meshes by cells accompanied by improved initial cell spreading. This nanolayer is stable in its cell adhesive characteristics also after γ-sterilization. An in vivo study in a rat intramuscular implantation model demonstrated that the local inflammatory tissue response did not differ between PPAAm-coated and untreated polylactide meshes.
  • Item
    Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo
    (London : BioMed Central, 2012) Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.-U.; Evert, M.; Huebner, N.O.; Guenther, C.; Heidecke, C.D.; Kramer, A.; Bussiahn, R.; Weltmann, K.-D.; Pati, O.; Bender, C.; von Bernstorff, W.
    Background: The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas.Methods: We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357.Results: TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/-0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/-4.4% of dead cells (untreated control) versus 78.0+/-9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/-7.2%, p=0.0009 versus 12.3+/-6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/-12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/-13.2% versus 37.7+/-14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP.Conclusions: Our data suggest possible future intra-operative applications of TTP to reduce microscopic residual disease in pancreatic cancer resections. Further promising applications include other malignancies (central liver/lung tumours) as well as synergistic effects combining TTP with chemotherapies. Yet, adaptations of plasma sources as well as of the composition of effective components of TTP are required to optimize their synergistic apoptotic actions.