Search Results

Now showing 1 - 2 of 2
  • Item
    Phase-resolved measurement of electric charge deposited by an atmospheric pressure plasma jet on a dielectric surface
    (Bristol : Institute of Physics Publishing, 2014) Wild, R.; Gerling, T.; Bussiahn, R.; Weltmann, K.-D.; Stollenwerk, L.
    The surface charge distribution deposited by the effluent of a dielectric barrier discharge driven atmospheric pressure plasma jet on a dielectric surface has been studied. For the first time, the deposition of charge was observed phase resolved. It takes place in either one or two events in each half cycle of the driving voltage. The charge transfer could also be detected in the electrode current of the jet. The periodic change of surface charge polarity has been found to correspond well with the appearance of ionized channels left behind by guided streamers (bullets) that have been identified in similar experimental situations. The distribution of negative surface charge turned out to be significantly broader than for positive charge. With increasing distance of the jet nozzle from the target surface, the charge transfer decreases until finally the effluent loses contact and the charge transfer stops.
  • Item
    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure
    ([London] : IOP, 2015) Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure ${{{\rm N}}_{2}}$, ${{{\rm O}}_{2}}$ and ${{{\rm N}}_{2}}$ + ${{{\rm O}}_{2}}$. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (${{{\rm O}}_{3}}$) and nitrogen dioxide (${\rm N}{{{\rm O}}_{2}}$) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the ${{{\rm O}}_{3}}$ and the ${\rm N}{{{\rm O}}_{2}}$ generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.