Search Results

Now showing 1 - 10 of 49
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Cold physical plasma-induced oxidation of cysteine yields reactive sulfur species (RSS)
    (Amsterdam [u.a.] : Elsevier, 2019) Bruno, Giuliana; Heusler, Thea; Lackmann, Jan-Wilm; Woedtke, Thomas von; Weltmann, Klaus-Dieter; Wende, Kristian
    Purpose: Studying plasma liquid chemistry can reveal insights into their biomedical effects, i.e. to understand the direct and indirect processes triggered by the treatment in a model or clinical application. Due to the reactivity of the sulfur atom, thiols are potential targets for plasma- derived reactive species. Being crucial for protein function and redox signaling pathways, their controllable modification would allow expanding the application range. Additionally, models to control and standardize CAP sources are desired tools for plasma source design. Methods: Cysteine, a ubiquitous amino acid, was used as a tracer compound to scavenge the reactive species produced by an argon plasma jet (kINPen). The resulting product pattern was identified via high-resolution mass spectrometry. The Ellman´s assay was used to screen CAP derived thiol consumption, and long-lived species deposition (hydrogen peroxide, nitrite, nitrate) was monitored in relation to the presence of cysteine. Results: The intensity of cysteine oxidation increased with treatment time and availability of oxygen in the feed gas. A range of products from cysteine was identified, in part indicative for certain treatment conditions. Several non-stable products occur transiently during the plasma treatment. Bioactive reactive sulfur species (RSS) have been found for mild treatment conditions, such as cysteine sulfoxides and cysteine-S-sulfonate. Considering the number of cysteine molecules in the boundary layer and the achieved oxidation state, short-lived species dominate in cysteine conversion. In addition, a boundary layer depletion of the tracer was observed. Conclusion: Translating these data into the in-vivo application, strong direct oxidation of protein thiol groups with subsequent changes in protein biochemistry must be considered. Plasma-derived RSS may in part contribute to the observed biomedical effects of CAP. Care must be taken to control the discharge parameter tightly as chemical dynamics at or in the liquid are subject to change easily. © 2019
  • Item
    Singlet-Oxygen-Induced Phospholipase A2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation
    (Weinheim : Wiley-VCH, 2021) Nasri, Zahra; Memari, Seyedali; Wenske, Sebastian; Clemen, Ramona; Martens, Ulrike; Delcea, Mihaela; Bekeschus, Sander; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes
    (Basel : MDPI, 2019) Schmidt, Michael; Hahn, Veronika; Altrock, Beke; Gerling, Torsten; Gerber, Ioana Cristina; Weltmann, Klaus-Dieter; von Woedtke, Thomas
    A new configuration of a discharge chamber and power source for the treatment of up to 1 L of liquid is presented. A leakage transformer, energizing two metal electrodes positioned above the liquid, limits the discharge current inductively by utilizing the weak magnetic coupling between the primary and secondary coils. No additional means to avoid arcing (electric short-circuiting), e.g., dielectric barriers or resistors, are needed. By using this technique, exceeding the breakdown voltage leads to the formation of transient spark discharges, producing non-thermal plasma (NTP). These discharges effected significant changes in the properties of the treated liquids (distilled water, physiological saline solution, and tap water). Considerable concentrations of nitrite and nitrate were detected after the plasma treatment. Furthermore, all tested liquids gained strong antibacterial efficacy which was shown by inactivating suspended Escherichia coli and Staphylococcus aureus. Plasma-treated tap water had the strongest effect, which is shown for the first time. Additionally, the pH-value of tap water did not decrease during the plasma treatment, and its conductivity increased less than for the other tested liquids. © 2019 by the authors.
  • Item
    Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment
    (Basel : MDPI, 2019) Meyer, Tobias; Bae, Hyeonsoo; Hasse, Sybille; Winter, Jörn; von Woedtke, Thomas; Schmitt, Michael; Weltmann, Klaus-Dieter; Popp, Jürgen
    Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
  • Item
    Zentrum fĂĽr Innovationskompetenz: Strategische Investitionen zur nachhaltigen Etablierung des ZIK plasmatis : Abschlussbericht zum Forschungsvorhaben mit dem FKZ: 03Z2DS1 ; Projektlaufzeit: 01.07.2013 - 31.01.2014
    (Hannover : Technische Informationsbibliothek (TIB), 2014) Weltmann, Klaus-Dieter; Reuter, Stephan; Masur, Kai
    [no abstract available]
  • Item
    Non-touching plasma–liquid interaction – where is aqueous nitric oxide generated?
    (Cambridge : RSC Publ., 2018) Jablonowski, Helena; Schmidt-Bleker, Ansgar; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.
  • Item
    Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-15) Jablonowski, Helena; Santos Sousa, Joao; Weltmann, Klaus-Dieter; Wende, Kristian; Reuter, Stephan
    In the field of plasma medicine, the identification of relevant reactive species in the liquid phase is highly important. To design the plasma generated species composition for a targeted therapeutic application, the point of origin of those species needs to be known. The dominant reactive oxygen species generated by the plasma used in this study are atomic oxygen, ozone, and singlet delta oxygen. The species density changes with the distance to the active plasma zone, and, hence, the oxidizing potential of this species cocktail can be tuned by altering the treatment distance. In both phases (gas and liquid), independent techniques have been used to determine the species concentration as a function of the distance. The surrounding gas composition and ambient conditions were controlled between pure nitrogen and air-like by using a curtain gas device. In the gas phase, in contrast to the ozone density, the singlet delta oxygen density showed to be more sensitive to the distance. Additionally, by changing the surrounding gas, admixing or not molecular oxygen, the dynamics of ozone and singlet delta oxygen behave differently. Through an analysis of the reactive species development for the varied experimental parameters, the importance of several reaction pathways for the proceeding reactions was evaluated and some were eventually excluded.
  • Item
    Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma
    (Amsterdam [u.a.] : Elsevier Science, 2021) Nasri, Zahra; Bruno, Giuliana; Bekeschus, Sander; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    The extent of clinical applications of oxidative stress-based therapies such as photodynamic therapy (PDT) or respiratory chain disruptors are increasing rapidly, with cold physical plasma (CPP) emerging as a further option. According to the current knowledge, the biological effects of CPP base on reactive oxygen and nitrogen species (RONS) relevant in cell signaling. To monitor the safety and the biological impact of the CPP, determining the local generation of RONS in the same environment in which they are going to be applied is desirable. Here, for the first time, the development of an electrochemical sensor for the simple, quick, and parallel determination of plasma-generated reactive species is described. The proposed sensor consists of a toluidine blue redox system that is covalently attached to a gold electrode surface. By recording chronoamperometry at different potentials, it is possible to follow the in-situ production of the main long-lived reactive oxygen and nitrogen species like hydrogen peroxide, nitrite, hypochlorite, and chloramine with time. The applicability of this electrochemical sensor for the in-situ assessment of reactive species in redox-based therapies is demonstrated by the precise analysis of hydrogen peroxide dynamics in the presence of blood cancer cells.
  • Item
    Periodic Exposure of Plasma-Activated Medium Alters Fibroblast Cellular Homoeostasis
    (Basel : Molecular Diversity Preservation International (MDPI), 2022) Bhartiya, Pradeep; Kaushik, Neha; Nguyen, Linh N.; Bekeschus, Sander; Masur, Kai; Weltmann, Klaus-Dieter; Kaushik, Nagendra Kumar; Choi, Eun Ha
    Excess amounts of redox stress and failure to regulate homeostatic levels of reactive species are associated with several skin pathophysiologic conditions. Nonmalignant cells are assumed to cope better with higher reactive oxygen and nitrogen species (RONS) levels. However, the effect of periodic stress on this balance has not been investigated in fibroblasts in the field of plasma medicine. In this study, we aimed to investigate intrinsic changes with respect to cellular proliferation, cell cycle, and ability to neutralize the redox stress inside fibroblast cells following periodic redox stress in vitro. Soft jet plasma with air as feeding gas was used to generate plasma-activated medium (PAM) for inducing redox stress conditions. We assessed cellular viability, energetics, and cell cycle machinery under oxidative stress conditions at weeks 3, 6, 9, and 12. Fibroblasts retained their usual physiological properties until 6 weeks. Fibroblasts failed to overcome the redox stress induced by periodic PAM exposure after 6 weeks, indicating its threshold potential. Periodic stress above the threshold level led to alterations in fibroblast cellular processes. These include consistent increases in apoptosis, while RONS accumulation and cell cycle arrest were observed at the final stages. Currently, the use of NTP in clinical settings is limited due to a lack of knowledge about fibroblasts’ behavior in wound healing, scar formation, and other fibrotic disorders. Understanding fibroblasts’ physiology could help to utilize nonthermal plasma in redox-related skin diseases. Furthermore, these results provide new information about the threshold capacity of fibroblasts and an insight into the adaptation mechanism against periodic oxidative stress conditions in fibroblasts.