Search Results

Now showing 1 - 3 of 3
  • Item
    Reactive species driven oxidative modifications of peptides—Tracing physical plasma liquid chemistry
    (Melville, NY : American Inst. of Physics, 2021) Wenske, Sebastian; Lackmann, Jan-Wilm; Busch, Larissa Milena; Bekeschus, Sander; von Woedtke, Thomas; Wende, Kristian
    The effluence of physical plasma consists of a significant share of reactive species, which may interact with biomolecules and yield chemical modifications comparable to those of physiological processes, e.g., post-translational protein modifications (oxPTMs). Consequentially, the aim of this work is to understand the role of physical plasma-derived reactive species in the introduction of oxPTM-like modifications in proteins. An artificial peptide library consisting of ten peptides was screened against the impact of two plasma sources, the argon-driven MHz-jet kINPen and the helium-driven RF-jet COST-Jet. Changes in the peptide molecular structure were analyzed by liquid chromatography–mass spectrometry. The amino acids cysteine, methionine, tyrosine, and tryptophan were identified as major targets. The introduction of one, two, or three oxygen atoms was the most common modification observed. Distinct modification patterns were observed for nitration (+N + 2O–H), which occurred in kINPen only (peroxynitrite), and chlorination (+Cl–H) that was exclusive for the COST-Jet in the presence of chloride ions (atomic oxygen/hypochlorite). Predominantly for the kINPen, singlet oxygen-related modifications, e.g., cleavage of tryptophan, were observed. Oxidation, carbonylation, and double oxidations were attributed to the impact of hydroxyl radicals and atomic oxygen. Leading to a significant change in the peptide side chain, most of these oxPTM-like modifications affect the secondary structure of amino acid chains, and amino acid polarity/functionality, ultimately modifying the performance and stability of cellular proteins.
  • Item
    Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017-6-5) Bekeschus, Sander; Wende, Kristian; Hefny, Mohamed Mokhtar; Rödder, Katrin; Jablonowski, Helena; Schmidt, Anke; Woedtke, Thomas von; Weltmann, Klaus-Dieter; Benedikt, Jan
    Cold physical plasma has been suggested as a powerful new tool in oncology. However, some cancer cells such as THP-1 leukaemia cells have been shown to be resistant towards plasma-induced cell death, thereby serving as a good model for optimizing plasmas in order to foster pro-apoptotic anticancer effects. A helium/oxygen radio frequency driven atmospheric plasma profoundly induced apoptosis in THP-1 cells whereas helium, humidified helium, and humidified helium/oxygen plasmas were inefficient. Hydrogen peroxide – previously shown as central plasma-derived agent – did not participate in the killing reaction but our results suggest hypochlorous acid to be responsible for the effect observed. Proteomic analysis of THP-1 cells exposed to He/O2 plasma emphasized a prominent growth retardation, cell stress, apoptosis, and a pro-immunogenic profile. Altogether, a plasma setting that inactivates previously unresponsive leukaemia cells is presented. Crucial reactive species in the plasma and liquid environment were identified and discussed, deciphering the complexity of plasma from the gas phase into the liquid down to the cellular response mechanism. These results may help tailoring plasmas for clinical applications such as oxidation-insensitive types of cancer.
  • Item
    Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-8-15) Jablonowski, Helena; Santos Sousa, Joao; Weltmann, Klaus-Dieter; Wende, Kristian; Reuter, Stephan
    In the field of plasma medicine, the identification of relevant reactive species in the liquid phase is highly important. To design the plasma generated species composition for a targeted therapeutic application, the point of origin of those species needs to be known. The dominant reactive oxygen species generated by the plasma used in this study are atomic oxygen, ozone, and singlet delta oxygen. The species density changes with the distance to the active plasma zone, and, hence, the oxidizing potential of this species cocktail can be tuned by altering the treatment distance. In both phases (gas and liquid), independent techniques have been used to determine the species concentration as a function of the distance. The surrounding gas composition and ambient conditions were controlled between pure nitrogen and air-like by using a curtain gas device. In the gas phase, in contrast to the ozone density, the singlet delta oxygen density showed to be more sensitive to the distance. Additionally, by changing the surrounding gas, admixing or not molecular oxygen, the dynamics of ozone and singlet delta oxygen behave differently. Through an analysis of the reactive species development for the varied experimental parameters, the importance of several reaction pathways for the proceeding reactions was evaluated and some were eventually excluded.