Search Results

Now showing 1 - 3 of 3
  • Item
    Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
    (Katlenburg-Lindau : EGU, 2020) Donth, Tobias; Jäkel, Evelyn; Ehrlich, André; Heinold, Bernd; Schacht, Jacob; Herber, Andreas; Zanatta, Marco; Wendisch, Manfred
    The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined atmospheric and snow radiative transfer simulations were performed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of interest is the remote sea-ice-covered Arctic Ocean in the vicinity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55 ) and a representative BC particle mass concentration of 5 ng g-1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2 W m-2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about -0.05 W m-2, even when the low BC mass concentration measured in the pristine early summer conditions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC embedded in the atmosphere and in the snow layer strongly depends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the atmospheric heating rate by water vapor or clouds is 1 to 2 orders of magnitude larger than that by atmospheric BC. Similarly, the daily mean total heating rate (6 K d-1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d-1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017
    (Katlenburg-Lindau : EGU, 2018) Knudsen, Erlend M.; Heinold, Bernd; Dahlke, Sandro; Bozem, Heiko; Crewell, Susanne; Gorodetskaya, Irina V.; Heygster, Georg; Kunkel, Daniel; Maturilli, Marion; Mech, Mario; Viceto, Carolina; Rinke, Annette; Schmithüsen, Holger; Ehrlich, André; Macke, Andreas; Lüpkes, Christof; Wendisch, Manfred
    The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the
  • Item
    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
    (Katlenburg-Lindau : Copernics Publications, 2019) Ehrlich, André; Wendisch, Manfred; Lüpkes, Christof; Buschmann, Matthias; Bozem, Heiko; Chechin, Dmitri; Clemen, Hans-Christian; Dupuy, Régis; Eppers, Olliver; Hartmann, Jörg; Herber, Andreas; Jäkel, Evelyn; Järvinen, Emma; Jourdan, Olivier; Kästner, Udo; Kliesch, Leif-Leonard; Köllner, Franziska; Mech, Mario; Mertes, Stephan; Neuber, Roland; Ruiz-Donoso, Elena; Schnaiter, Martin; Schneide, Johannes; Stapf, Johannes; Zanatta, Marco
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated using truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603).