Search Results

Now showing 1 - 2 of 2
  • Item
    Aerial river management by smart cross-border reforestation
    (Amsterdam [u.a.] : Elsevier Science, 2019) Weng, Wei; Costa, Luís; Lüdeke, Matthias K.B.; Zemp, Delphine C.
    In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to consider multiple approaches for securing water availability. One often disregarded option is the promotion of reforestation in source regions supplying important quantities of atmospheric moisture transported over long distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart reforestation’). Here we present a case demonstrating smart reforestation's potential as a water management option. Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while runoff gain during the dry season reached 26.93%. Given the city's population growth scenarios, the increase of the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030. Building on the findings, we argue for a more systematic consideration of aerial river connections between regions in reforestation and land planning for future challenges. © 2019 The Authors
  • Item
    Landscape matters: Insights from the impact of mega-droughts on Colombia's energy transition
    (Amsterdam [u.a.] : Elsevier, 2020) Weng, Wei; Becker, Stefanie L.; Lüdeke, Matthias K. B.; Lakes, Tobia
    Mega-droughts can cause disruption to the affected society sparking a transition. We explore the causes and effects of the 2015−2016 mega-drought in Colombia. Using the multi-level perspective as a framework, we found that the mega-drought sparked an energy transition in Colombia whose dynamics were impacted both by the institutionalization of niches as well as the ability to predict the next drought. We were able to trace, using the current understanding of anthropogenic forces, the cause of the mega-drought to socio-technical landscape development influenced by human-induced warming and land use change. We found that the regimes in Bolivia and Brazil were able to influence the landscape through deforestation, and hence contribute to the intensity of a mega-drought in Colombia. The knowledge that a regime can cause disruption in regimes in other geographies and sectors has implications for transition research as well as decision-making for coping with droughts and other disasters. © 2020