Search Results

Now showing 1 - 10 of 10
  • Item
    The economically optimal warming limit of the planet
    (Göttingen : Copernicus Publ., 2019) Ueckerd, Falko; Frieler, Katja; Lange, Stefan; Wenz, Leonie; Luderer, Gunnar; Levermann, Anders
    Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2°C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy-economy-climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to "well below 2 degrees" is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. © 2019 Copernicus GmbH. All rights reserved.
  • Item
    Road to glory or highway to hell? Global road access and climate change mitigation
    (Bristol : IOP Publ., 2020) Wenz, Leonie; Weddige, Ulf; Jakob, Michael; Steckel, Jan Christoph
    Transportation infrastructure is considered a key factor for economic development and poverty alleviation. The United Nations have explicitly included the provision of transport infrastructure access, e.g. through all-season road access, in their Sustainable Development Goal agenda (SDGs, target 9.1). Yet, little is known about the number of people lacking access to roads worldwide, the costs of closing existing access gaps and the implications of additional roads for other sustainability concerns such as climate change mitigation (SDG-13). Here we quantify, for 250 countries and territories, the percentage of population without road access in 2 km. We find that infrastructure investments required to provide quasi-universal road access are about USD 3 trillion. We estimate that the associated cumulative CO2 emissions from construction work and additional traffic until the end of the century amount to roughly 16 Gt. Our geographically explicit global analysis provides a starting point for refined regional studies and for the quantification of further environmental and social implications of SDG-9.1.
  • Item
    Future heat stress to reduce people’s purchasing power
    (San Francisco, Ca. : PLOS, 2021) Kuhla, Kilian; Willner, Sven Norman; Otto, Christian; Wenz, Leonie; Levermann, Anders
    With increasing carbon emissions rising temperatures are likely to impact our economies and societies profoundly. In particular, it has been shown that heat stress can strongly reduce labor productivity. The resulting economic perturbations can propagate along the global supply network. Here we show, using numerical simulations, that output losses due to heat stress alone are expected to increase by about 24% within the next 20 years, if no additional adaptation measures are taken. The subsequent market response with rising prices and supply shortages strongly reduces the consumers’ purchasing power in almost all countries including the US and Europe with particularly strong effects in India, Brazil, and Indonesia. As a consequence, the producing sectors in many regions temporarily benefit from higher selling prices while decreasing their production in quantity, whereas other countries suffer losses within their entire national economy. Our results stress that, even though climate shocks may stimulate economic activity in some regions and some sectors, their unpredictability exerts increasing pressure on people’s livelihood.
  • Item
    The impact of climate conditions on economic production. Evidence from a global panel of regions
    (Amsterdam [u.a.] : Elsevier, 2020) Kalkuhl, Matthias; Wenz, Leonie
    We present a novel data set of subnational economic output, Gross Regional Product (GRP), for more than 1500 regions in 77 countries that allows us to empirically estimate historic climate impacts at different time scales. Employing annual panel models, long-difference regressions and cross-sectional regressions, we identify effects on productivity levels and productivity growth. We do not find evidence for permanent growth rate impacts but we find robust evidence that temperature affects productivity levels considerably. An increase in global mean surface temperature by about 3.5°C until the end of the century would reduce global output by 7–14% in 2100, with even higher damages in tropical and poor regions. Updating the DICE damage function with our estimates suggests that the social cost of carbon from temperature-induced productivity losses is on the order of 73–142$/tCO2 in 2020, rising to 92–181$/tCO2 in 2030. These numbers exclude non-market damages and damages from extreme weather events or sea-level rise. © 2020 The Authors
  • Item
    Teleconnected food supply shocks
    (Bristol : IOP Publishing, 2016) Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
    The 2008–2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
  • Item
    Corona crisis fuels racially profiled hate in social media networks
    (Amsterdam : Elsevier, 2020) Stechemesser, Annika; Wenz, Leonie; Levermann, Anders
    [No abstract available]
  • Item
    Nighttime light data reveal lack of full recovery after hurricanes in Southern US
    (Bristol : IOP Publ., 2022) Barton-Henry, Kelsey; Wenz, Leonie
    As the climate warms, many areas of the world are experiencing more frequent and extreme weather events. Hurricanes carry some of the costliest short-term socioeconomic repercussions via economic losses and people displaced. There is, however, little quantitative evidence regarding medium- to long-term effects, nor factors moderating recovery. Here we show that areas affected by hurricanes of category 4 or 5 in the southern US between 2014 and 2020 generally do not demonstrate full recovery in the longer term. Utilizing Visible Infrared Imaging Radiometer Suite nighttime light (NTL) data as a proxy for economic activity and population density, we build a timeline of recovery via NTL radiance levels. We exploit the difference in the eligibility for aid from the Federal Emergency Management Agency (FEMA) to apply a quasi-experimental method to identify changes in NTL radiance attributable to hurricanes. We find that after three years, affected areas demonstrate a reduction in NTL radiance levels of between 2% and 14% compared to the pre-disaster period. Combining these results with machine learning techniques, we are able to investigate those factors that contribute to recovery. We find counties demonstrating smaller reductions in NTL radiance levels in the months following the hurricane are buoyed by the amount of FEMA aid received, but that this aid does not foster a longer-term return to normal radiance levels. Investigating areas receiving FEMA aid at the household and individual level, we find age and employment are more important than other demographic factors in determining hurricane recovery over time. These findings suggest that aid may be more important in motivating short-term recovery for public entities than for individuals but is not sufficient to guarantee complete recovery in the longer term.
  • Item
    Post-Brexit no-trade-deal scenario: Short-term consumer benefit at the expense of long-term economic development
    (San Francisco, California, US : PLOS, 2020) Wenz, Leonie; Levermann, Anders; Willner, Sven Norman; Otto, Christian; Kuhla, Kilian
    After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.
  • Item
    Enhanced economic connectivity to foster heat stress-related losses
    (Washington, DC : American Association for the Advancement of Science, 2016) Wenz, Leonie; Levermann, Anders
    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress–induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken.
  • Item
    Decay radius of climate decision for solar panels in the city of Fresno, USA
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Barton-Henry, Kelsey; Wenz, Leonie; Levermann, Anders
    To design incentives towards achieving climate mitigation targets, it is important to understand the mechanisms that affect individual climate decisions such as solar panel installation. It has been shown that peer effects are important in determining the uptake and spread of household photovoltaic installations. Due to coarse geographical data, it remains unclear whether this effect is generated through geographical proximity or within groups exhibiting similar characteristics. Here we show that geographical proximity is the most important predictor of solar panel implementation, and that peer effects diminish with distance. Using satellite imagery, we build a unique geo-located dataset for the city of Fresno to specify the importance of small distances. Employing machine learning techniques, we find the density of solar panels within the shortest measured radius of an address is the most important factor in determining the likelihood of that address having a solar panel. The importance of geographical proximity decreases with distance following an exponential curve with a decay radius of 210 meters. The dependence is slightly more pronounced in low-income groups. These findings support the model of distance-related social diffusion, and suggest priority should be given to seeding panels in areas where few exist.