Search Results

Now showing 1 - 3 of 3
  • Item
    Mode transitions in DBR semiconductor lasers: experiments, mode analysis and simulations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Hasler, Karl-Heinz; Sumpf, Bernd; Tien, Tran Quoc; Wenzel, Hans
    The paper is concerned with a general ansatz of a phenomenological evolution model for solid-solid phase transformation kinetics in steel. To model the phase transition of austenite-ferrite, -pearlite or -bainite, a first order nonlinear ordinary differential equation (ODE) is considered. The main goal of this paper is to derive certain conditions for parameters which based on data obtained from transformation diagrams. This leads to a set of independent parameters for which the inverse problem has an unique solution
  • Item
    Dynamics of micro-integrated external-cavity diode lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Radziunas, Mindaugas; Tronciu, Vasile Z.; Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Wicht, Andreas; Wenzel, Hans
    This paper reports the results of numerical and experimental investigations of the dynamics of an external cavity diode laser device composed of a semiconductor laser and a distant Bragg grating, which provides an optical feedback. Due to the influence of the feedback, this system can operate at different dynamic regimes. The traveling wave model is used for simulations and analysis of the nonlinear dynamics in the considered laser device. Based on this model, a detailed analysis of the optical modes is performed, and the stability of the stationary states is discussed. It is shown, that the results obtained from the simulation and analysis of the device are in good agreement with experimental findings.
  • Item
    Semiconductor laser linewidth theory revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wenzel, Hans; Kantner, Markus; Radziunas, Mindaugas; Bandelow, Uwe
    More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective Alpha-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.