Search Results

Now showing 1 - 3 of 3
  • Item
    Growth induction and low-oxygen apoptosis inhibition of human CD34 + progenitors in collagen gels
    (New York, NY : Hindawi, 2013) Avitabile, D.; Salchert, K.; Werner, C.; Capogrossi, M.C.; Pesce, M.
    Various reports have indicated low survival of injected progenitors into unfavorable environments such as the ischemic myocardium or lower limb tissues. This represents a major bottleneck in stem-cell-based cardiovascular regenerative medicine. Strategies to enhance survival of these cells in recipient tissues have been therefore sought to improve stem cell survival and ensure long-term engraftment. In the present contribution, we show that embedding human cord blood-derived CD34+ cells into a collagen I-based hydrogel containing cytokines is a suitable strategy to promote stem cell proliferation and protect these cells from anoxia-induced apoptosis.
  • Item
    Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models
    (London : Nature Publishing Group, 2014) Chwalek, K.; Tsurkan, M.V.; Freudenberg, U.; Werner, C.
    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.
  • Item
    Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta
    (London : Nature Publishing Group, 2013) Ehrlich, H.; Rigby, J.K.; Botting, J.P.; Tsurkan, M.V.; Werner, C.; Schwille, P.; Petrášek, Z.; Pisera, A.; Simon, P.; Sivkov, V.N.; Vyalikh, D.V.; Molodtsov, S.L.; Kurek, D.; Kammer, M.; Hunoldt, S.; Born, R.; Stawski, D.; Steinhof, A.; Bazhenov, V.V.; Geisler, T.
    Sponges are probably the earliest branching animals, and their fossil record dates back to the Precambrian. Identifying their skeletal structure and composition is thus a crucial step in improving our understanding of the early evolution of metazoans. Here, we present the discovery of 505-million-year-old chitin, found in exceptionally well preserved Vauxia gracilenta sponges from the Middle Cambrian Burgess Shale. Our new findings indicate that, given the right fossilization conditions, chitin is stable for much longer than previously suspected. The preservation of chitin in these fossils opens new avenues for research into other ancient fossil groups.