Search Results

Now showing 1 - 2 of 2
  • Item
    Discovery of hemocompatible bacterial biofilm-resistant copolymers
    (Amsterdam [u.a.] : Elsevier Science, 2020) Singh, Taranjit; Hook, Andrew L.; Luckett, Jeni; Maitz, Manfred F.; Sperling, Claudia; Werner, Carsten; Davies, Martyn C.; Irvine, Derek J.; Williams, Paul; Alexander, R.
    Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with these specific properties. A series of weakly amphiphilic monomers are combinatorially polymerized with acrylate glycol monomers of varying chain lengths to create a library of 645 multi-functional candidate materials containing multiple chemical moieties that impart anti-biofilm, hemo- and immuno-compatible properties. These materials are screened in over 15,000 individual biological assays, targeting two bacterial species, one Gram negative (Pseudomonas aeruginosa) and one Gram positive (Staphylococcus aureus) commonly associated with central venous catheter infections, using 5 different measures of hemocompatibility and 6 measures of immunocompatibililty. Selected copolymers reduce platelet activation, platelet loss and leukocyte activation compared with the standard comparator PTFE as well as reducing bacterial biofilm formation in vitro by more than 82% compared with silicone. Poly(isobornyl acrylate-co-triethylene glycol methacrylate) (75:25) is identified as the optimal material across all these measures reducing P. aeruginosa biofilm formation by up to 86% in vivo in a murine foreign body infection model compared with uncoated silicone. © 2020 The Authors
  • Item
    A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits
    (Amsterdam [u.a.] : Elsevier Science, 2019) Bellmann, Jessica; Goswami, Ruchi Y.; Girardo, Salvatore; Rein, Nelly; Hosseinzadeh, Zohreh; Hicks, Michael R.; Busskamp, Volker; Pyle, April D.; Werner, Carsten; Sterneckert, Jared
    Neuromuscular circuits (NMCs) are vital for voluntary movement, and effective models of NMCs are needed to understand the pathogenesis of, as well as to identify effective treatments for, multiple diseases, including Duchenne's muscular dystrophy and amyotrophic lateral sclerosis. Microfluidics are ideal for recapitulating the central and peripheral compartments of NMCs, but myotubes often detach before functional NMCs are formed. In addition, microfluidic systems are often limited to a single experimental unit, which significantly limits their application in disease modeling and drug discovery. Here, we developed a microfluidic platform (MFP) containing over 100 experimental units, making it suitable for medium-throughput applications. To overcome detachment, we incorporated a reactive polymer surface allowing customization of the environment to culture different cell types. Using this approach, we identified conditions that enable long-term co-culture of human motor neurons and myotubes differentiated from human induced pluripotent stem cells inside our MFP. Optogenetics demonstrated the formation of functional NMCs. Furthermore, we developed a novel application of the rabies tracing assay to efficiently identify NMCs in our MFP. Therefore, our MFP enables large-scale generation and quantification of functional NMCs for disease modeling and pharmacological drug targeting. © 2019 The Authors