Search Results

Now showing 1 - 9 of 9
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Screening Arrays of Laminin Peptides on Modified Cellulose for Promotion of Adhesion of Primary Endothelial and Neural Precursor Cells
    (Weinheim : Wiley-VCH, 2021) Wetzel, Richard; Hauser, Sandra; Lin, Weilin; Berg, Peggy; Werner, Carsten; Pietzsch, Jens; Kempermann, Gerd; Zhang, Yixin
    Neural precursor cells (NPC) are primary cells intensively used in the context of research on adult neurogenesis and modeling of neuronal development in health and diseased states. Substrates that can facilitate NPC adhesion will be very useful for culturing these cells. Due to the presence of laminin in basal lamina as well as their involvement in differentiation, migration, and adhesion of many types of cells, surfaces modified with laminin-derived peptides are focused upon and compared with the widely used fibronectin-derived Arg-Gly-Asp (RGD) peptides. An array of 46 peptides is synthesized on cellulose paper (SPOT) to identify laminin-derived peptides that promote short-term adhesion of murine NPC and human primary endothelial cells. Various previously reported peptide sequences are re-evaluated in this work. Initial adhesion experiments show NPC preferred several laminin-derived peptides by up to 5-time higher cell numbers, compared to the well-known promiscuous integrin binding RGD peptide. Importantly, screening of cell adhesion has revealed a synergetic effect of filamentous matrix, peptide sequence, surface property, ligand density, and the dynamic process of NPC adhesion. © The Authors. Advanced Biology published by Wiley-VCH GmbH
  • Item
    Amphiphilic Copolymers for Versatile, Facile, and In Situ Tunable Surface Biofunctionalization
    (Weinheim : Wiley-VCH, 2021) Ruland, André; Schenker, Saskia; Schirmer, Lucas; Friedrichs, Jens; Meinhardt, Andrea; Schwartz, Véronique B.; Kaiser, Nadine; Konradi, Rupert; MacDonald, William; Helmecke, Tina; Sikosana, Melissa K.L.N.; Valtin, Juliane; Hahn, Dominik; Renner, Lars D.; Werner, Carsten; Freudenberg, Uwe
    Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces.
  • Item
    Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing
    (Weinheim : Wiley-VCH, 2021) Schirmer, Lucas; Atallah, Passant; Freudenberg, Uwe; Werner, Carsten
    Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.
  • Item
    EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength
    (Weinheim : Wiley-VCH, 2020) Hosseini, Kamran; Taubenberger, Anna; Werner, Carsten; Fischer-Friedrich, Elisabeth
    To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
  • Item
    Polymer Hydrogels to Guide Organotypic and Organoid Cultures
    (Weinheim : Wiley-VCH, 2020) Magno, Valentina; Meinhardt, Andrea; Werner, Carsten
    Human organotypic and organoid cultures provide increasingly life-like models of tissue/organ development and disease, enable more realistic drug screening, and may ultimately pave the way for new therapies. A broad variety of extracellular matrix-based or inspired materials is instrumental in these approaches. In this review article, the foundations of the related materials design are summarized with an emphasis on the advantages and limitations of decellularized and reconstituted biopolymeric matrices as well as biohybrid and fully synthetic polymer hydrogel systems applied to enable specific organotypic and organoid cultures. Recent progress in the fabrication of defined hydrogel systems offering thoroughly tunable biochemical and biophysical properties is highlighted. Potentialities of hydrogel-based approaches to address the persisting challenges of organoid technologies, namely scalability, connectivity/integration, reproducibility, parallelization, and in situ monitoring are discussed. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Tuning the Local Availability of VEGF within Glycosaminoglycan-Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis
    (Weinheim : Wiley-VCH, 2020) Limasale, Yanuar Dwi Putra; Atallah, Passant; Werner, Carsten; Freudenberg, Uwe; Zimmermann, Ralf
    Incorporation of sulfated glycosaminoglycans (GAGs) into cell-instructive polymer networks is shown to be instrumental in controlling the diffusivity and activity of growth factors. However, a subtle balance between local retention and release of the factors is needed to effectively direct cell fate decisions. To quantitatively unravel material characteristics governing these key features, the GAG content and the GAG sulfation pattern of star-shaped poly(ethylene glycol) (starPEG)–GAG hydrogels are herein tuned to control the local availability and bioactivity of GAG-affine vascular endothelial growth factor (VEGF165). Hydrogels containing varying concentrations of heparin or heparin derivatives with different sulfation pattern are prepared and thoroughly characterized for swelling, mechanical properties, and growth factor transport. Mathematical models are developed to predict the local concentration and spatial distribution of free and bound VEGF165 within the gel matrices. The results of simulation and experimental studies concordantly reveal how the GAG concentration and sulfation pattern determine the local availability of VEGF165 within the cell-instructive hydrogels and how the factor—in interplay with cell-instructive gel properties—determines the formation and spatial organization of capillary networks of embedded human vascular endothelial cells. Taken together, this study exemplifies how mathematical modeling and rational hydrogel design can be combined to pave the way for precision tissue engineering. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials
    (Weinheim : Wiley-VCH, 2021) Hahn, Dominik; Sonntag, Jannick M.; Lück, Steffen; Maitz, Manfred F.; Freudenberg, Uwe; Jordan, Rainer; Werner, Carsten
    Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
  • Item
    Cell-Instructive Multiphasic Gel-in-Gel Materials
    (Weinheim : Wiley-VCH, 2020) Kühn, Sebastian; Sievers, Jana; Stoppa, Aukha; Träber, Nicole; Zimmermann, Ralf; Welzel, Petra B.; Werner, Carsten
    Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell-instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue- and organ-specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel-in-gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim