Search Results

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Item

Reduction of Activated Alkenes by PIII/PV Redox Cycling Catalysis

2019, Longwitz, Lars, Werner, Thomas

The carbon–carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl-substituted phosphetane oxide was employed as the catalyst. The procedure is highly selective towards activated double bonds, tolerating a variety of functional groups that are usually prone to reduction. In total, 25 alkenes and two alkynes were hydrogenated to the corresponding alkanes in excellent yields of up to 99 %. Notably, less active poly(methylhydrosiloxane) could also be utilized as the terminal reductant. Mechanistic investigations revealed the phosphane as the catalyst resting state and a protonation/deprotonation sequence as the crucial step in the catalytic cycle. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.