Search Results

Now showing 1 - 8 of 8
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.
  • Item
    Iron-Based Binary Catalytic System for the Valorization of CO2 into Biobased Cyclic Carbonates
    (Washington, DC : ACS Publ., 2016) Büttner, Hendrik; Grimmer, Christoph; Steinbauer, Johannes; Werner, Thomas
    The atom economic conversion of epoxidized vegetable oils and fatty acid derivatives with CO2 into cyclic carbonates permits the synthesis of novel oleo compounds from renewable resources as well as the valorization of CO2 as a C1-building block. Organic phosphorus salts proved to be selective catalysts for this reaction. In a widespread screening 11 inexpensive and nontoxic iron salts were evaluated as cocatalysts to enhance the reaction rate. In the presence of 0.25 mol % iron chloride the selectivity and conversion were significantly improved. The reaction parameters were optimized under solvent-free conditions, and the scope and limitation were evaluated for 9 epoxidized fatty acid esters and 4 epoxidized vegetable oils. The biobased carbonates were isolated in excellent yields up to 95% and can be considered to be based on 100% CO2 in respect to carbon. This binary catalyst system features high efficiency and plain simplicity while valorizing CO2 into cyclic carbonates based on renewable feedstocks.
  • Item
    Plasma-Assisted Immobilization of a Phosphonium Salt and Its Use as a Catalyst in the Valorization of CO2
    (Weinheim : Wiley-VCH, 2020) Hu, Yuya; Peglow, Sandra; Longwitz, Lars; Frank, Marcus; Epping, Jan Dirk; Breser, Volker; Werner, Thomas
    The first plasma-assisted immobilization of an organocatalyst, namely a bifunctional phosphonium salt in an amorphous hydrogenated carbon coating, is reported. This method makes the requirement for prefunctionalized supports redundant. The immobilized catalyst was characterized by solid-state 13C and 31P NMR spectroscopy, SEM, and energy-dispersive X-ray spectroscopy. The immobilized catalyst (1 mol %) was employed in the synthesis of cyclic carbonates from epoxides and CO2. Notably, the efficiency of the plasma-treated catalyst on SiO2 was higher than those of the SiO2 support impregnated with the catalyst and even the homogeneous counterpart. After optimization of the reaction conditions, 13 terminal and four internal epoxides were converted with CO2 to the respective cyclic carbonates in yields of up to 99 %. Furthermore, the possibility to recycle the immobilized catalyst was evaluated. Even though the catalyst could be reused, the yields gradually decreased from the third run. However, this is the first example of the recycling of a plasma-immobilized catalyst, which opens new possibilities in the recovery and reuse of catalysts. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Indirect reduction of CO2 and recycling of polymers by manganese-catalyzed transfer hydrogenation of amides, carbamates, urea derivatives, and polyurethanes
    (Cambridge : RSC, 2021) Liu, Xin; Werner, Thomas
    The reduction of polar bonds, in particular carbonyl groups, is of fundamental importance in organic chemistry and biology. Herein, we report a manganese pincer complex as a versatile catalyst for the transfer hydrogenation of amides, carbamates, urea derivatives, and even polyurethanes leading to the corresponding alcohols, amines, and methanol as products. Since these compound classes can be prepared using CO2as a C1 building block the reported reaction represents an approach to the indirect reduction of CO2. Notably, these are the first examples on the reduction of carbamates and urea derivatives as well as on the C-N bond cleavage in amides by transfer hydrogenation. The general applicability of this methodology is highlighted by the successful reduction of 12 urea derivatives, 26 carbamates and 11 amides. The corresponding amines, alcohols and methanol were obtained in good to excellent yields up to 97%. Furthermore, polyurethanes were successfully converted which represents a viable strategy towards a circular economy. Based on control experiments and the observed intermediates a feasible mechanism is proposed. © The Royal Society of Chemistry 2021.
  • Item
    Reduction of Activated Alkenes by PIII/PV Redox Cycling Catalysis
    (Weinheim : Wiley-VCH, 2019) Longwitz, Lars; Werner, Thomas
    The carbon–carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl-substituted phosphetane oxide was employed as the catalyst. The procedure is highly selective towards activated double bonds, tolerating a variety of functional groups that are usually prone to reduction. In total, 25 alkenes and two alkynes were hydrogenated to the corresponding alkanes in excellent yields of up to 99 %. Notably, less active poly(methylhydrosiloxane) could also be utilized as the terminal reductant. Mechanistic investigations revealed the phosphane as the catalyst resting state and a protonation/deprotonation sequence as the crucial step in the catalytic cycle. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    AMPA-15N - Synthesis and application as standard compound in traceable degradation studies of glyphosate
    (Amsterdam : Elsevier, 2021) Wirth, Marisa A.; Longwitz, Lars; Kanwischer, Marion; Gros, Peter; Leinweber, Peter; Werner, Thomas
    Stable isotope labeling of pollutants is a valuable tool to investigate their environmental transport and degradation. For the globally most frequently used herbicide glyphosate, such studies have, so far, been hampered by the absence of an analytical standard for its labeled metabolite AMPA-15N, which is formed during the degradation of all commercially available glyphosate isotopologues. Without such a standard, detection and quantitation of AMPA-15N, e.g. with LC-MS/MS, is not possible. Therefore, a synthetic pathway to AMPA-15N from benzamide-15N via the hemiaminal was developed. AMPA-15N was obtained in sufficient yield and purity to be used as a standard compound for LC-MS/MS analysis. Suitable MS-detection settings as well as a calibration using the internal standard (IS) approach were established for Fmoc-derivatized AMPA-15N. The use of different AMPA isotopologues as IS was complicated by the parallel formation of [M+H]+ and [M]+• AMPA-Fmoc precursor ions in ESI-positive mode, causing signal interferences between analyte and IS. We recommend the use of either AMPA-13C-15N, AMPA-13C-15N-D2 or a glyphosate isotopologue as IS, as they do not affect the linearity of the calibration curve. As a proof of concept, the developed analysis procedure for AMPA-15N was used to refine the results from a field lysimeter experiment investigating leaching and degradation of glyphosate-2-13C-15N. The newly enabled quantitation of AMPA-15N in soil extracts showed that similar amounts (0.05 - 0.22 mg·kg-1) of the parent herbicide glyphosate and its primary metabolite AMPA persisted in the topsoil over the study period of one year, while vertical transport through the soil column did not occur for either of the compounds. The herein developed analysis concepts will facilitate future design and execution of experiments on the environmental fate of the herbicide glyphosate.
  • Item
    Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO2 with Epoxides Catalyzed by Phenol-Functionalized Phosphonium Salts
    (Weinheim : Wiley-VCH, 2021) Hu, Yuya; Wei, Zhihong; Frey, Anna; Kubis, Christoph; Ren, Chang-Yue; Spannenberg, Anke; Jiao, Haijun; Werner, Thomas
    A series of hydroxy-functionalized phosphonium salts were studied as bifunctional catalysts for the conversion of CO2 with epoxides under mild and solvent-free conditions. The reaction in the presence of a phenol-based phosphonium iodide proceeded via a first order rection kinetic with respect to the substrate. Notably, in contrast to the aliphatic analogue, the phenol-based catalyst showed no product inhibition. The temperature dependence of the reaction rate was investigated, and the activation energy for the model reaction was determined from an Arrhenius-plot (Ea =39.6 kJ mol-1 ). The substrate scope was also evaluated. Under the optimized reaction conditions, 20 terminal epoxides were converted at room temperature to the corresponding cyclic carbonates, which were isolated in yields up to 99 %. The reaction is easily scalable and was performed on a scale up to 50 g substrate. Moreover, this method was applied in the synthesis of the antitussive agent dropropizine starting from epichlorohydrin and phenylpiperazine. Furthermore, DFT calculations were performed to rationalize the mechanism and the high efficiency of the phenol-based phosphonium iodide catalyst. The calculation confirmed the activation of the epoxide via hydrogen bonding for the iodide salt, which facilitates the ring-opening step. Notably, the effective Gibbs energy barrier regarding this step is 97 kJ mol-1 for the bromide and 72 kJ mol-1 for the iodide salt, which explains the difference in activity.
  • Item
    Copolymerization of CO2 and epoxides mediated by zinc organyls
    (London : RSC Publishing, 2018) Wulf, Christoph; Doering, Ulrike; Werner, Thomas
    Herein we report the copolymerization of CHO with CO2 in the presence of various zinc compounds R2Zn (R = Et, Bu, iPr, Cy and Ph). Several zinc organyls proved to be efficient catalysts for this reaction in the absence of water and co-catalyst. Notably, readily available Bu2Zn reached a TON up to 269 and an initial TOF up to 91 h-1. The effect of various parameters on the reaction outcome has been investigated. Poly(ether)carbonates with molecular weights up to 79.3 kg mol-1 and a CO2 content of up to 97% were obtained. Under standard reaction conditions (100 °C, 2.0 MPa, 16 h) the influence of commonly employed co-catalysts such as PPNCl and TBAB has been investigated in the presence of Et2Zn (0.5 mol%). The reaction of other epoxides (e.g. propylene and styrene oxide) under these conditions led to no significant conversion or to the formation of the respective cyclic carbonate as the main product.