Search Results

Now showing 1 - 2 of 2
  • Item
    Polarization manipulation of surface acoustic waves by metallization patterns on a piezoelectric substrate
    (Melville, NY : AIP Publishing, 2020) Weser, R.; Darinskii, A.N.; Schmidt, H.
    Surface acoustic waves (SAWs) with large normal (vertical) surface displacement at the surface are commonly utilized in microfluidic actuators in order to provide the desired momentum transfer to the fluid. We present an alternative concept using a SAW with comparatively small vertical displacement. Such a SAW passes underneath the microfluidic vessel walls with minimum losses but it needs to be converted inside the vessel into surface vibrations with large vertical displacements. The principal operability of the above idea is illustrated by experimental and numerical studies of the polarization conversion of a leaky SAW on 64° rotated Y-cut of lithium niobate owing to the partial metallization of the substrate surface. In particular, it is found that vertical displacements on the metallized surface can be up to 3.5 times higher as compared to their values on the free surface. Results of computations agree reasonably well with measurements carried out with a laser Doppler vibrometer and allow the clarification of some specific features of this polarization conversion by means of spatial frequency analysis. © 2020 Author(s).
  • Item
    The complexity of surface acoustic wave fields used for microfluidic applications
    (Amsterdam [u.a.] : Elsevier, 2020) Weser, R.; Winkler, A.; Weihnacht, M.; Menzel, S.; Schmidt, H.
    Using surface acoustic waves (SAW) for the agitation and manipulation of fluids and immersed particles or cells in lab-on-a-chip systems has been state of the art for several years. Basic tasks comprise fluid mixing, atomization of liquids as well as sorting and separation (or trapping) of particles and cells, e.g. in so-called acoustic tweezers. Even though the fundamental principles governing SAW excitation and propagation on anisotropic, piezoelectric substrates are well-investigated, the complexity of wave field effects including SAW diffraction, refraction and interference cannot be comprehensively simulated at this point of time with sufficient accuracy. However, the design of microfluidic actuators relies on a profound knowledge of SAW propagation, including superposition of multiple SAWs, to achieve the predestined functionality of the devices. Here, we present extensive experimental results of high-resolution analysis of the lateral distribution of the complex displacement amplitude, i.e. the wave field, alongside with the electrical S-parameters of the generating transducers. These measurements were carried out and are compared in setups utilizing travelling SAW (tSAW) excited by single interdigital transducer (IDT), standing SAW generated between two IDTs (1DsSAW, 1D acoustic tweezers) and between two pairs of IDTs (2DsSAW, 2D acoustic tweezers) with different angular alignment in respect to pure Rayleigh mode propagation directions and other practically relevant orientations. For these basic configurations, typically used to drive SAW-based microfluidics, the influence of common SAW phenomena including beam steering, coupling coefficient dispersion and diffraction on the resultant wave field is investigated. The results show how tailoring of the acoustic conditions, based on profound knowledge of the physical effects, can be achieved to finally realize a desired behavior of a SAW-based microacoustic-fluidic system. © 2020 Elsevier B.V.